Abstract

An automated choroidal vessel segmentation and quantification method for high-penetration optical coherence tomography (OCT) was developed for advanced visualization and evaluation of the choroidal vasculature. This method uses scattering OCT volumes for the segmentation of choroidal vessels by using a multi-scale adaptive threshold. The segmented choroidal vessels are then processed by multi-scale morphological analysis to quantify the vessel diameters. The three-dimensional structure and the diameter distribution of the choroidal vasculature were then obtained. The usefulness of the method was then evaluated by analyzing the OCT volumes of normal subjects.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41, 3117–3123 (2000).
    [PubMed]
  2. D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res. 29, 144–168 (2010).
    [CrossRef] [PubMed]
  3. R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
    [CrossRef] [PubMed]
  4. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
    [CrossRef] [PubMed]
  5. V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152, 663–668 (2011).
    [CrossRef] [PubMed]
  6. D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
    [CrossRef] [PubMed]
  7. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
    [PubMed]
  8. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
    [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography — principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  10. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
    [CrossRef]
  11. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
    [CrossRef] [PubMed]
  12. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
    [CrossRef] [PubMed]
  13. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
    [CrossRef] [PubMed]
  14. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006).
    [CrossRef] [PubMed]
  15. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
    [CrossRef] [PubMed]
  16. L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).
    [CrossRef] [PubMed]
  17. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20, 7564–7574 (2012).
    [CrossRef] [PubMed]
  18. R. Motaghiannezam, D. M. Schwartz, and S. E. Fraser, “In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm,” Invest. Ophthalmol. Vis. Sci. 53, 2337–2348 (2012).
    [CrossRef] [PubMed]
  19. Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
    [CrossRef] [PubMed]
  20. F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20, 385–396 (2012).
    [CrossRef] [PubMed]
  21. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved oct using interval-optimized backstitched b-scans,” Opt. Express 20, 20516–20534 (2012).
    [CrossRef] [PubMed]
  22. K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
    [CrossRef] [PubMed]
  23. P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
    [CrossRef] [PubMed]
  24. J.-C. Mwanza, F. E. Sayyad, and D. L. Budenz, “Choroidal thickness in unilateral advanced glaucoma,” Invest. Ophthalmol. Vis. Sci. 53, 6695–6701 (2012).
    [CrossRef] [PubMed]
  25. S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
    [CrossRef]
  26. S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
    [CrossRef]
  27. J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52, 3430–3435 (2011).
    [CrossRef] [PubMed]
  28. Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma 6, 23–32 (1997).
    [CrossRef] [PubMed]
  29. M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci. 1679, 90–97 (1999).
    [CrossRef]
  30. J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004).
    [CrossRef]
  31. W. Cai and A. C. S. Chung, “Multi-resolution vessel segmentation using normalized cuts in retinal images,” Lecture Notes in Comput. Sci. 4191, 928–936 (2006).
    [CrossRef]
  32. M. D. Saleh, C. Eswaran, and A. Mueen, “An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection,” J. Digit. Imag. 24, 564–572 (20011).
  33. E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification.” IEEE Trans. Med. Imag. 26, 1357–1365 (2007).
    [CrossRef]
  34. A. S. G. Singh, T. Schmoll, and R. A. Leitgeb, “Segmentation of doppler optical coherence tomography signatures using a support-vector machine.” Biomed. Opt. Express 2, 1328–1339 (2011).
    [CrossRef] [PubMed]
  35. L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
    [CrossRef] [PubMed]
  36. V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3d 1060 nm oct retinal data,” Biomed. Opt. Express 4, 134–150 (2013).
    [CrossRef]
  37. M. Sohrab, K. Wu, and A. A. Fawzi, “A pilot study of morphometric analysis of choroidal vasculature in vivousing en face optical coherence tomography,” PLoS ONE 7, e48631 (2012).
    [CrossRef]
  38. A. N. S. Institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2007 (American National Standards Institute, New York, 2007).
  39. F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Comput. Graphics 18, 207–212 (1984).
    [CrossRef]
  40. J. Kittler, J. Illingworth, and J. Föglein, “Threshold selection based on a simple image statistic,” Comput. Vis. Graph. 30, 125–147 (1985).
    [CrossRef]
  41. N. Sang, H. Li, W. Peng, and T. Zhang, “Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images,” Imag. Vision Comput. 25, 1263–1270 (2007).
    [CrossRef]
  42. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern., Syst. 9, 62–66 (1979).
    [CrossRef]
  43. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell629–639 (1990).
    [CrossRef]
  44. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Science 1496, 130–137 (1998).
    [CrossRef]
  45. A. F. Frangi, “Three-dimensional model-based analysis of vascular and cardiac images,” Ph.D. thesis, Proefschrift Universiteit Utrecht (2001).
  46. C.-H. Wu, G. Agam, and P. Stanchev, “A general framework for vessel segmentation in retinal images,” in “International Symposium on Computational Intelligence in Robotics and Automation, 2007. CIRA 2007.”, (2007), pp. 37–42.
    [CrossRef]
  47. T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
    [CrossRef] [PubMed]
  48. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
    [CrossRef] [PubMed]
  49. M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
    [CrossRef] [PubMed]
  50. S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
    [CrossRef] [PubMed]
  51. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid.” Opt. Express 19, 20886–20903 (2011).
    [CrossRef] [PubMed]

2013 (3)

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3d 1060 nm oct retinal data,” Biomed. Opt. Express 4, 134–150 (2013).
[CrossRef]

2012 (14)

F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20, 385–396 (2012).
[CrossRef] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).
[CrossRef] [PubMed]

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20, 7564–7574 (2012).
[CrossRef] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved oct using interval-optimized backstitched b-scans,” Opt. Express 20, 20516–20534 (2012).
[CrossRef] [PubMed]

R. Motaghiannezam, D. M. Schwartz, and S. E. Fraser, “In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm,” Invest. Ophthalmol. Vis. Sci. 53, 2337–2348 (2012).
[CrossRef] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
[CrossRef] [PubMed]

M. Sohrab, K. Wu, and A. A. Fawzi, “A pilot study of morphometric analysis of choroidal vasculature in vivousing en face optical coherence tomography,” PLoS ONE 7, e48631 (2012).
[CrossRef]

S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
[CrossRef]

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

J.-C. Mwanza, F. E. Sayyad, and D. L. Budenz, “Choroidal thickness in unilateral advanced glaucoma,” Invest. Ophthalmol. Vis. Sci. 53, 6695–6701 (2012).
[CrossRef] [PubMed]

2011 (5)

J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52, 3430–3435 (2011).
[CrossRef] [PubMed]

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152, 663–668 (2011).
[CrossRef] [PubMed]

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

A. S. G. Singh, T. Schmoll, and R. A. Leitgeb, “Segmentation of doppler optical coherence tomography signatures using a support-vector machine.” Biomed. Opt. Express 2, 1328–1339 (2011).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid.” Opt. Express 19, 20886–20903 (2011).
[CrossRef] [PubMed]

2010 (1)

D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res. 29, 144–168 (2010).
[CrossRef] [PubMed]

2009 (1)

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
[CrossRef] [PubMed]

2008 (2)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
[CrossRef]

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

2007 (3)

E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification.” IEEE Trans. Med. Imag. 26, 1357–1365 (2007).
[CrossRef]

N. Sang, H. Li, W. Peng, and T. Zhang, “Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images,” Imag. Vision Comput. 25, 1263–1270 (2007).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

2006 (3)

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006).
[CrossRef] [PubMed]

W. Cai and A. C. S. Chung, “Multi-resolution vessel segmentation using normalized cuts in retinal images,” Lecture Notes in Comput. Sci. 4191, 928–936 (2006).
[CrossRef]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

2005 (2)

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004).
[CrossRef]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography — principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

2000 (1)

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41, 3117–3123 (2000).
[PubMed]

1999 (1)

M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci. 1679, 90–97 (1999).
[CrossRef]

1998 (1)

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Science 1496, 130–137 (1998).
[CrossRef]

1997 (1)

Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma 6, 23–32 (1997).
[CrossRef] [PubMed]

1994 (2)

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
[CrossRef] [PubMed]

1990 (1)

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell629–639 (1990).
[CrossRef]

1986 (1)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

1985 (1)

J. Kittler, J. Illingworth, and J. Föglein, “Threshold selection based on a simple image statistic,” Comput. Vis. Graph. 30, 125–147 (1985).
[CrossRef]

1984 (1)

F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Comput. Graphics 18, 207–212 (1984).
[CrossRef]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern., Syst. 9, 62–66 (1979).
[CrossRef]

Abramoff, M.

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004).
[CrossRef]

Abràmoff, M. D.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
[CrossRef] [PubMed]

Agam, G.

C.-H. Wu, G. Agam, and P. Stanchev, “A general framework for vessel segmentation in retinal images,” in “International Symposium on Computational Intelligence in Robotics and Automation, 2007. CIRA 2007.”, (2007), pp. 37–42.
[CrossRef]

Agawa, T.

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

Akiba, M.

Alam, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Banitt, M. R.

J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52, 3430–3435 (2011).
[CrossRef] [PubMed]

Barnstable, C.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Beaumont, P.

Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma 6, 23–32 (1997).
[CrossRef] [PubMed]

Binder, S.

Bonesi, M.

Braaf, B.

Bracken, M. B.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Budenz, D. L.

J.-C. Mwanza, F. E. Sayyad, and D. L. Budenz, “Choroidal thickness in unilateral advanced glaucoma,” Invest. Ophthalmol. Vis. Sci. 53, 6695–6701 (2012).
[CrossRef] [PubMed]

J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52, 3430–3435 (2011).
[CrossRef] [PubMed]

Cai, W.

W. Cai and A. C. S. Chung, “Multi-resolution vessel segmentation using normalized cuts in retinal images,” Lecture Notes in Comput. Sci. 4191, 928–936 (2006).
[CrossRef]

Chavez-Pirson, A.

Chew, E. Y.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Choi, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Chung, A. C. S.

W. Cai and A. C. S. Chung, “Multi-resolution vessel segmentation using normalized cuts in retinal images,” Lecture Notes in Comput. Sci. 4191, 928–936 (2006).
[CrossRef]

Costanza, M. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

Crow, F. C.

F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Comput. Graphics 18, 207–212 (1984).
[CrossRef]

de Boer, J. F.

Drexler, W.

Duan, L.

Duker, J. S.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152, 663–668 (2011).
[CrossRef] [PubMed]

Esmaeelpour, M.

Eswaran, C.

M. D. Saleh, C. Eswaran, and A. Mueen, “An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection,” J. Digit. Imag. 24, 564–572 (20011).

Fabritius, T.

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

Fawzi, A. A.

M. Sohrab, K. Wu, and A. A. Fawzi, “A pilot study of morphometric analysis of choroidal vasculature in vivousing en face optical coherence tomography,” PLoS ONE 7, e48631 (2012).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography — principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Ferris, F. L.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Feuer, W. J.

J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52, 3430–3435 (2011).
[CrossRef] [PubMed]

Föglein, J.

J. Kittler, J. Illingworth, and J. Föglein, “Threshold selection based on a simple image statistic,” Comput. Vis. Graph. 30, 125–147 (1985).
[CrossRef]

Frangi, A. F.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Science 1496, 130–137 (1998).
[CrossRef]

A. F. Frangi, “Three-dimensional model-based analysis of vascular and cardiac images,” Ph.D. thesis, Proefschrift Universiteit Utrecht (2001).

Fraser, S. E.

R. Motaghiannezam, D. M. Schwartz, and S. E. Fraser, “In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm,” Invest. Ophthalmol. Vis. Sci. 53, 2337–2348 (2012).
[CrossRef] [PubMed]

Fujimoto, J. G.

V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3d 1060 nm oct retinal data,” Biomed. Opt. Express 4, 134–150 (2013).
[CrossRef]

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152, 663–668 (2011).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
[CrossRef]

Fukuda, S.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
[CrossRef] [PubMed]

Gerth, C.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Glittenberg, C.

Gomi, F.

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

Goren, J.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152, 663–668 (2011).
[CrossRef] [PubMed]

Goto, H.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

Götzinger, E.

Gragoudas, E. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

Guyer, D. R.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
[CrossRef] [PubMed]

Haynes, C.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Henning, A. K.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Ho, A.

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
[CrossRef] [PubMed]

Hochberg, J. T.

J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52, 3430–3435 (2011).
[CrossRef] [PubMed]

Hoh, J.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Honegger, J.

Hong, Y.

Hong, Y.-J.

Hope-Ross, M.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

Hughes, A. D.

M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci. 1679, 90–97 (1999).
[CrossRef]

Ikuno, Y.

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
[CrossRef]

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

Illingworth, J.

J. Kittler, J. Illingworth, and J. Föglein, “Threshold selection based on a simple image statistic,” Comput. Vis. Graph. 30, 125–147 (1985).
[CrossRef]

Ishii, K.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
[CrossRef] [PubMed]

Itoh, M.

Iwasaki, T.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

Jaillon, F.

Jirarattanasopa, P.

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

Ju, M. J.

Kajic, V.

Kittler, J.

J. Kittler, J. Illingworth, and J. Föglein, “Threshold selection based on a simple image statistic,” Comput. Vis. Graph. 30, 125–147 (1985).
[CrossRef]

Klein, R. J.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

Kraus, M. F.

Krupsky, S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

Kuroda, S.

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography — principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Lee, B. H.

Lee, E. C.

Lee, K.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
[CrossRef] [PubMed]

Leitgeb, R. A.

Li, H.

N. Sang, H. Li, W. Peng, and T. Zhang, “Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images,” Imag. Vision Comput. 25, 1263–1270 (2007).
[CrossRef]

Lim, H.

Lim, Y.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
[CrossRef] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[CrossRef] [PubMed]

Linsenmeier, R. A.

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41, 3117–3123 (2000).
[PubMed]

Makita, S.

Malik, J.

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell629–639 (1990).
[CrossRef]

Mane, S. M.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Manjunath, V.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152, 663–668 (2011).
[CrossRef] [PubMed]

Margolis, R.

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
[CrossRef] [PubMed]

Martínez-Pérez, M. E.

M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci. 1679, 90–97 (1999).
[CrossRef]

Matsushita, K.

S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
[CrossRef]

Mayne, S. T.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Miki, A.

S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
[CrossRef]

Millar, T. J.

Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma 6, 23–32 (1997).
[CrossRef] [PubMed]

Min, E. J.

Miura, M.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
[CrossRef] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

Morse, L.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Motaghiannezam, R.

R. Motaghiannezam, D. M. Schwartz, and S. E. Fraser, “In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm,” Invest. Ophthalmol. Vis. Sci. 53, 2337–2348 (2012).
[CrossRef] [PubMed]

Mueen, A.

M. D. Saleh, C. Eswaran, and A. Mueen, “An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection,” J. Digit. Imag. 24, 564–572 (20011).

Mujat, M.

Mullins, R. F.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
[CrossRef] [PubMed]

Mwanza, J.-C.

J.-C. Mwanza, F. E. Sayyad, and D. L. Budenz, “Choroidal thickness in unilateral advanced glaucoma,” Invest. Ophthalmol. Vis. Sci. 53, 6695–6701 (2012).
[CrossRef] [PubMed]

J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52, 3430–3435 (2011).
[CrossRef] [PubMed]

Nagase, S.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

Nakai, K.

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

Nakata, I.

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

Nickla, D. L.

D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res. 29, 144–168 (2010).
[CrossRef] [PubMed]

Niemeijer, M.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
[CrossRef] [PubMed]

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004).
[CrossRef]

Niessen, W. J.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Science 1496, 130–137 (1998).
[CrossRef]

Nishida, K.

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
[CrossRef]

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

Nouchi, T.

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

Ohguro, N.

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

Oishi, A.

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

Ooto, S.

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

Orlock, D.

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
[CrossRef] [PubMed]

Orlock, D. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

Oshika, T.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
[CrossRef] [PubMed]

Othara, R.

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern., Syst. 9, 62–66 (1979).
[CrossRef]

Ott, J.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Padnick-Silver, L.

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41, 3117–3123 (2000).
[PubMed]

Park, S. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Parker, A. A. B. K. H.

M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci. 1679, 90–97 (1999).
[CrossRef]

Peng, W.

N. Sang, H. Li, W. Peng, and T. Zhang, “Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images,” Imag. Vision Comput. 25, 1263–1270 (2007).
[CrossRef]

Perfetti, R.

E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification.” IEEE Trans. Med. Imag. 26, 1357–1365 (2007).
[CrossRef]

Perona, P.

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell629–639 (1990).
[CrossRef]

Pircher, M.

Považay, B.

Pozonni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

Puliafito, C. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

Ricci, E.

E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification.” IEEE Trans. Med. Imag. 26, 1357–1365 (2007).
[CrossRef]

Rohrer, K. T.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

Sackler, R. S.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Saleh, M. D.

M. D. Saleh, C. Eswaran, and A. Mueen, “An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection,” J. Digit. Imag. 24, 564–572 (20011).

Sang, N.

N. Sang, H. Li, W. Peng, and T. Zhang, “Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images,” Imag. Vision Comput. 25, 1263–1270 (2007).
[CrossRef]

SanGiovanni, J. P.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Sarks, S.

Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma 6, 23–32 (1997).
[CrossRef] [PubMed]

Sattmann, H.

Sawa, M.

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

Sayyad, F. E.

J.-C. Mwanza, F. E. Sayyad, and D. L. Budenz, “Choroidal thickness in unilateral advanced glaucoma,” Invest. Ophthalmol. Vis. Sci. 53, 6695–6701 (2012).
[CrossRef] [PubMed]

Schmoll, T.

Schwartz, D. M.

R. Motaghiannezam, D. M. Schwartz, and S. E. Fraser, “In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm,” Invest. Ophthalmol. Vis. Sci. 53, 2337–2348 (2012).
[CrossRef] [PubMed]

Shields, W.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

Sicam, V. A. D. P.

Singh, A. S. G.

Slakter, J. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
[CrossRef] [PubMed]

Sobel, R. S.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

Sohrab, M.

M. Sohrab, K. Wu, and A. A. Fawzi, “A pilot study of morphometric analysis of choroidal vasculature in vivousing en face optical coherence tomography,” PLoS ONE 7, e48631 (2012).
[CrossRef]

Sonka, M.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
[CrossRef] [PubMed]

Sorenson, J. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
[CrossRef] [PubMed]

Spaide, R. F.

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
[CrossRef] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

Staal, J.

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004).
[CrossRef]

Stanchev, P.

C.-H. Wu, G. Agam, and P. Stanchev, “A general framework for vessel segmentation in retinal images,” in “International Symposium on Computational Intelligence in Robotics and Automation, 2007. CIRA 2007.”, (2007), pp. 37–42.
[CrossRef]

Stanton, A. V.

M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci. 1679, 90–97 (1999).
[CrossRef]

Tanaka, R.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

Thom, S. A.

M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci. 1679, 90–97 (1999).
[CrossRef]

Tindel, L. J.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

Torzicky, T.

Tsai, J.-Y.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Tsujikawa, A.

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

Tsujikawa, M.

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

Unterhuber, A.

Usui, S.

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
[CrossRef]

Vaegan,

Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma 6, 23–32 (1997).
[CrossRef] [PubMed]

van Ginneken, B.

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004).
[CrossRef]

van Meurs, J. C.

van Zeeburg, E.

Vermeer, K. A.

Vienola, K. V.

Viergever, M.

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004).
[CrossRef]

Viergever, M. A.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Science 1496, 130–137 (1998).
[CrossRef]

Vincken, K. L.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Science 1496, 130–137 (1998).
[CrossRef]

Wallman, J.

D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res. 29, 144–168 (2010).
[CrossRef] [PubMed]

Werner, J. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Wu, C.-H.

C.-H. Wu, G. Agam, and P. Stanchev, “A general framework for vessel segmentation in retinal images,” in “International Symposium on Computational Intelligence in Robotics and Automation, 2007. CIRA 2007.”, (2007), pp. 37–42.
[CrossRef]

Wu, K.

M. Sohrab, K. Wu, and A. A. Fawzi, “A pilot study of morphometric analysis of choroidal vasculature in vivousing en face optical coherence tomography,” PLoS ONE 7, e48631 (2012).
[CrossRef]

Yamanari, M.

Yamashiro, K.

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

Yannuzzi, L. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
[CrossRef] [PubMed]

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

Yasui, T.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

Yasuno, Y.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
[CrossRef]

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
[CrossRef] [PubMed]

F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20, 385–396 (2012).
[CrossRef] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).
[CrossRef] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[CrossRef] [PubMed]

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

Yatagai, T.

Yin, Z. Q.

Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma 6, 23–32 (1997).
[CrossRef] [PubMed]

Yoshimura, N.

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

Yun, S. H.

Zang, E.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

Zawadzki, R. J.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Zeiss, C.

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
[CrossRef] [PubMed]

Zhang, T.

N. Sang, H. Li, W. Peng, and T. Zhang, “Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images,” Imag. Vision Comput. 25, 1263–1270 (2007).
[CrossRef]

Zotter, S.

ACM SIGGRAPH Comput. Graphics (1)

F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Comput. Graphics 18, 207–212 (1984).
[CrossRef]

Am. J. Ophthalmol. (4)

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 152, 663–668 (2011).
[CrossRef] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[CrossRef] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol. 147, 811–815 (2009).
[CrossRef] [PubMed]

S. Usui, Y. Ikuno, A. Miki, K. Matsushita, Y. Yasuno, and K. Nishida, “Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma.” Am. J. Ophthalmol. 153, 10–6.e1 (2012).
[CrossRef]

Arch. Ophthalmol. (1)

D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy.” Arch. Ophthalmol. 112, 1057–1062 (1994).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Comput. Vis. Graph. (1)

J. Kittler, J. Illingworth, and J. Föglein, “Threshold selection based on a simple image statistic,” Comput. Vis. Graph. 30, 125–147 (1985).
[CrossRef]

Graefes Arch. Clin. Exp. Ophthalmol. (2)

T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy japanese subjects by three-dimensional high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 249, 1485–1492 (2011).
[CrossRef] [PubMed]

K. Nakai, F. Gomi, Y. Ikuno, Y. Yasuno, T. Nouchi, N. Ohguro, and K. Nishida, “Choroidal observations in vogt-koyanagi-harada disease using high-penetration optical coherence tomography.” Graefes Arch. Clin. Exp. Ophthalmol. 250, 1089–1095 (2012).
[CrossRef] [PubMed]

IEEE Trans. Med. Imag. (2)

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004).
[CrossRef]

E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector classification.” IEEE Trans. Med. Imag. 26, 1357–1365 (2007).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell (1)

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell629–639 (1990).
[CrossRef]

IEEE Trans. Syst., Man, Cybern., Syst. (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern., Syst. 9, 62–66 (1979).
[CrossRef]

Imag. Vision Comput. (1)

N. Sang, H. Li, W. Peng, and T. Zhang, “Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images,” Imag. Vision Comput. 25, 1263–1270 (2007).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (6)

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical sd-oct,” Invest. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
[CrossRef] [PubMed]

P. Jirarattanasopa, S. Ooto, I. Nakata, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy,” Invest. Ophthalmol. Vis. Sci. 53, 3663–3672 (2012).
[CrossRef] [PubMed]

J.-C. Mwanza, F. E. Sayyad, and D. L. Budenz, “Choroidal thickness in unilateral advanced glaucoma,” Invest. Ophthalmol. Vis. Sci. 53, 6695–6701 (2012).
[CrossRef] [PubMed]

J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52, 3430–3435 (2011).
[CrossRef] [PubMed]

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41, 3117–3123 (2000).
[PubMed]

R. Motaghiannezam, D. M. Schwartz, and S. E. Fraser, “In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm,” Invest. Ophthalmol. Vis. Sci. 53, 2337–2348 (2012).
[CrossRef] [PubMed]

J. Digit. Imag. (1)

M. D. Saleh, C. Eswaran, and A. Mueen, “An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection,” J. Digit. Imag. 24, 564–572 (20011).

J. Glaucoma (1)

Z. Q. Yin, Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma.” J. Glaucoma 6, 23–32 (1997).
[CrossRef] [PubMed]

Lecture Notes in Comput. Sci. (2)

M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, and A. A. B. K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” Lecture Notes in Comput. Sci. 1679, 90–97 (1999).
[CrossRef]

W. Cai and A. C. S. Chung, “Multi-resolution vessel segmentation using normalized cuts in retinal images,” Lecture Notes in Comput. Sci. 4191, 928–936 (2006).
[CrossRef]

Lecture Notes in Computer Science (1)

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Science 1496, 130–137 (1998).
[CrossRef]

Ophthalmology (3)

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey.” Ophthalmology 93, 611–617 (1986).
[PubMed]

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green.” Ophthalmology 101, 529–533 (1994).
[PubMed]

Opt. Express (9)

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20, 385–396 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved oct using interval-optimized backstitched b-scans,” Opt. Express 20, 20516–20534 (2012).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).
[CrossRef] [PubMed]

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20, 7564–7574 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid.” Opt. Express 19, 20886–20903 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

PLoS One (1)

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging.” PLoS One 7, e44026 (2012).
[CrossRef] [PubMed]

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE 8, e58716 (2013).
[CrossRef] [PubMed]

M. Sohrab, K. Wu, and A. A. Fawzi, “A pilot study of morphometric analysis of choroidal vasculature in vivousing en face optical coherence tomography,” PLoS ONE 7, e48631 (2012).
[CrossRef]

Prog. Retin. Eye Res. (2)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
[CrossRef]

D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res. 29, 144–168 (2010).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography — principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Retina (1)

S. Kuroda, Y. Ikuno, Y. Yasuno, K. Nakai, S. Usui, M. Sawa, M. Tsujikawa, F. Gomi, and K. Nishida, “Choroidal thickness in central serous chorioretinopathy.” Retina 33, 302–308 (2013).
[CrossRef]

Science (1)

R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and J. Hoh, “Complement factor h polymorphism in age-related macular degeneration,” Science 308, 385–389 (2005).
[CrossRef] [PubMed]

Other (3)

A. N. S. Institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2007 (American National Standards Institute, New York, 2007).

A. F. Frangi, “Three-dimensional model-based analysis of vascular and cardiac images,” Ph.D. thesis, Proefschrift Universiteit Utrecht (2001).

C.-H. Wu, G. Agam, and P. Stanchev, “A general framework for vessel segmentation in retinal images,” in “International Symposium on Computational Intelligence in Robotics and Automation, 2007. CIRA 2007.”, (2007), pp. 37–42.
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (977 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

A schematic of the framework for the choroidal vessel segmentation and quantification method. The dashed lines represent the same operation with a 375-μm window, i.e., adaptive thresholding, busyness filtering and rejection of false vessel pixels, but with different window size except 47-μm. For the 47-μm window, the Busyness filter is not applied because this window does not possess enough number of pixels to apply the busyness filter.

Fig. 2
Fig. 2

En face slices extracted at (a) 25 μm, (b) 100 μm, (c) 175 μm, and (d) 250 μm beneath the RPE. The white and black represent hyper- and hypo-scattering, respectively.

Fig. 3
Fig. 3

(a) OCT en face slice at a constant depth from the RPE. (b) Binary image obtained by adaptive local thresholding with a fixed window size. The white and black pixels are non-vessel and vessel pixels, respectively. (c) Busyness distribution obtained from (b). (d) The classification result of pseudo-vessel pixels (red) based on the busyness distribution.

Fig. 4
Fig. 4

Choroidal vessel segmentation results corresponding to OCT en face slices in Fig. 2.

Fig. 5
Fig. 5

(a) en face projection of the hyper-reflective complex obtained by averaging the intensity values. The vessel structure in the en face projection is enhanced by the Frangi filter (b), and further thresholding and morphological closing provides segmented retinal vessels (c).

Fig. 6
Fig. 6

Choroidal vessel diameter estimations corresponding to Fig. 4. The sub-figures (a)–(d) represent the en face slices at 25 μm, 100 μm, 175 μm, and 250 μm from the RPE, respectively. The brightness represents the vessel diameter except the region without choroidal vessels and the region of the shadow of retinal vessels are shown in black.

Fig. 7
Fig. 7

The absolute difference in the estimated choroidal vessel diameters between the standard and fast methods. (a) – (d) respectively correspond to the slices (a) – (d) of Fig. 4 and at 25 μm, 100 μm, 175 μm, and 250 μm from the RPE.

Fig. 8
Fig. 8

An example of active deformable surface representing a vascular network envelope. (a) initial 10 × 10 control points and (b) an example of deformed surface obtained by 2-D bi-cubic interpolation of control points after deformation.

Fig. 9
Fig. 9

Coronal (a), sagittal (b), and birds-eye (c) views of a segmented choroidal vasculature ( Media 1). Note that the rendered volume in (b) is magnified ×2 along the depth direction. The color in these volume-rendered images represents the quantified vascular thickness. (d) The thickness map of the choroidal vascular network layer.

Fig. 10
Fig. 10

The choroidal vascular network layer thickness maps (left) and the mean choroidal vessel diameter as a function of the depth from RPE obtained from two eyes of two subjects. C: central subfield, NI: nasal inner macula, SI: superior inner macula, TI: temporal inner macula, II: inferior inner macula, NO: nasal outer macula, SO: superior outer macula, TO: temporal outer macula, IO: inferior outer macula.

Fig. 11
Fig. 11

Comparison of ICGA (a), en face projection of vessel diameter volume (b), and depth-resolved en face projection of vessel diameter volume (c) of a 6-mm × 6-mm macular region obtained from the same subject with the Case-1 of Fig. 10.

Fig. 12
Fig. 12

Vascular network thickness maps obtained in 8 eyes of 4 healthy subjects. Each row represents each subject. The dashed line in the left image of the third row indicates the position of the B-scan shown in Fig. 13.

Fig. 13
Fig. 13

(a) A B-scan image of the right eye of Subject-3 corresponding to the dashed line in Fig. 12. (b) A phase retardation image of the same subject taken at the same position of the eye by using polarization sensitive OCT.

Fig. 14
Fig. 14

Depth-resolved vascular diameter maps corresponding to Fig. 12. Note that the color maps are normalized for each of the subjects.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ρ ( x 0 , y 0 ; w x , w y ) x i , y i I ( x i , y i ) g ( x i , y i ) / x i , y i g ( x i , y i ) , ( x i , y i ) W ( x 0 , y 0 ; w x , w y )
g ( x i , y i ) ( I ( x i , y i ) x i ) 2 + ( I ( x i , y i ) y i ) 2
V c ( x i , y i , z i ) = { V ( x i , y i , z i ; w = 47 ) V ( x i , y i , z i ; w = 94 ) for I ( x i , y i , z i ) k * V ( x i , y i , z i ; w = 94 ) V ( x i , y i , z i ; w = 188 ) V ( x i , y i , z i ; w = 375 ) otherwise
I ( τ + 1 ) ( x i , y i ) = I ( τ ) ( x i , y i ) + δ div ( c ( x i , y i ) I ( τ ) ( x i , y i ) )
c ( x i , y i ) = 1 1 + ( I ( x i , y i ) / κ ) 2
F j ( τ ) = α R j ( τ ) + β P j ( τ ) + G ,
R j ( τ ) = ( 2 S ( x i , y i ) x i 2 + 2 S ( x i , y i ) y i 2 ) | x i = u j , y i = v j
z j ( τ + 1 ) = { z j ( τ ) 1 for F j ( τ ) < F θ z j ( τ ) for F θ F j ( τ ) F θ z j ( τ ) + 1 for F j ( τ ) > F θ
Z d ( x i , y i ) = z i = 1 M d i ( x i , y i , z i ) M Δ z

Metrics