Abstract

A plant science research goal is to manipulate single cells in an intact organism in order to study their interactions with neighboring cells. Based on a technique previously demonstrated in isolated plant cells, mammalian cells and cyanobacteria, Arabidopsis epidermal cells were optoperforated to allow for uptake of external cascade blue-labeled dextrans. Adverse organelle responses were determined to be minimal and dye retention was demonstrated for at least 72 hours. This technique overcomes the physical challenges presented by the plant cell wall and demonstrates the feasibility of in situ optoperforation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
    [CrossRef] [PubMed]
  2. R. Senz and G. Müller, “Laser in medicine,” Berich. Bunsen Gesell.93(3), 269–277 (1989).
    [CrossRef]
  3. G. Weber, S. Monajembashi, J. Wolfrum, and K.-O. Greulich, “Genetic changes induced in higher plant cells by a laser microbeam,” Physiol. Plant.79(1), 190–193 (1990).
    [CrossRef]
  4. Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
    [CrossRef] [PubMed]
  5. S. Eapen, “Pollen grains as a target for introduction of foreign genes into plants: an assessment,” Physiol. Mol. Biol. Plants17(1), 1–8 (2011).
    [CrossRef] [PubMed]
  6. S. C. Jeoung, M. S. Sidhu, J. S. Yahng, H. J. Shin, and G. Y. Baik, Advances in Lasers and Electro Optics (InTech, 2010), Chap. 35.
  7. D. D. Fernando, J. L. Richards, and J. R. Kikkert, “In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen,” Plant Cell Rep.25(5), 450–456 (2006).
    [CrossRef] [PubMed]
  8. H. Schinkel, P. Jacobs, S. Schillberg, and M. Wehner, “Infrared picosecond laser for perforation of single plant cells,” Biotechnol. Bioeng.99(1), 244–248 (2008).
    [CrossRef] [PubMed]
  9. Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
    [CrossRef]
  10. W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006).
    [CrossRef] [PubMed]
  11. T. Murashige and F. Skoog, “A Revised medium for rapid growth and bio assays with tobacco tissue cultures,” Physiol. Plant.15(3), 473–497 (1962).
    [CrossRef]
  12. G. Weber, S. Monajembashi, K. O. Greulich, and J. Wolfrum, “Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells,” Naturwissenschaften75(1), 35–36 (1988).
    [CrossRef]
  13. B. K. Nelson, X. Cai, and A. Nebenführ, “A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants,” Plant J.51(6), 1126–1136 (2007).
    [CrossRef] [PubMed]
  14. D. R. Hoagland and D. I. Arnon, “The water-culture method for growing plants without soil,” Circular. California Agricultural Experiment Station347, 1–32 (1950).
  15. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B.81(8), 1015–1047 (2005).
    [CrossRef]
  16. S. Grill and E. H. K. Stelzer, “Method to calculate lateral and axial gain factors of optical setups with a large solid angle,” J. Opt. Soc. Am. A16(11), 2658–2665 (1999).
    [CrossRef]
  17. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
    [CrossRef] [PubMed]
  18. G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning (Marcel Dekker, 2005).
  19. X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
    [CrossRef]
  20. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
    [CrossRef] [PubMed]
  21. C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,” Bioimaging4(3), 198–207 (1996).
    [CrossRef]
  22. Z. Li, S. Renneckar, and J. Barone, “Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose,” Cellulose17(1), 57–68 (2010).
    [CrossRef]

2011

S. Eapen, “Pollen grains as a target for introduction of foreign genes into plants: an assessment,” Physiol. Mol. Biol. Plants17(1), 1–8 (2011).
[CrossRef] [PubMed]

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

2010

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

Z. Li, S. Renneckar, and J. Barone, “Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose,” Cellulose17(1), 57–68 (2010).
[CrossRef]

2008

H. Schinkel, P. Jacobs, S. Schillberg, and M. Wehner, “Infrared picosecond laser for perforation of single plant cells,” Biotechnol. Bioeng.99(1), 244–248 (2008).
[CrossRef] [PubMed]

2007

B. K. Nelson, X. Cai, and A. Nebenführ, “A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants,” Plant J.51(6), 1126–1136 (2007).
[CrossRef] [PubMed]

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

2006

W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006).
[CrossRef] [PubMed]

D. D. Fernando, J. L. Richards, and J. R. Kikkert, “In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen,” Plant Cell Rep.25(5), 450–456 (2006).
[CrossRef] [PubMed]

2005

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B.81(8), 1015–1047 (2005).
[CrossRef]

2000

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

1999

1996

C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,” Bioimaging4(3), 198–207 (1996).
[CrossRef]

1990

G. Weber, S. Monajembashi, J. Wolfrum, and K.-O. Greulich, “Genetic changes induced in higher plant cells by a laser microbeam,” Physiol. Plant.79(1), 190–193 (1990).
[CrossRef]

1989

R. Senz and G. Müller, “Laser in medicine,” Berich. Bunsen Gesell.93(3), 269–277 (1989).
[CrossRef]

1988

G. Weber, S. Monajembashi, K. O. Greulich, and J. Wolfrum, “Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells,” Naturwissenschaften75(1), 35–36 (1988).
[CrossRef]

1962

T. Murashige and F. Skoog, “A Revised medium for rapid growth and bio assays with tobacco tissue cultures,” Physiol. Plant.15(3), 473–497 (1962).
[CrossRef]

1950

D. R. Hoagland and D. I. Arnon, “The water-culture method for growing plants without soil,” Circular. California Agricultural Experiment Station347, 1–32 (1950).

Agate, B.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Aibushev, A.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

Arnon, D. I.

D. R. Hoagland and D. I. Arnon, “The water-culture method for growing plants without soil,” Circular. California Agricultural Experiment Station347, 1–32 (1950).

Badr, Y. A.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Bahieldin, A.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Barbashov, Y.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

Barone, J.

Z. Li, S. Renneckar, and J. Barone, “Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose,” Cellulose17(1), 57–68 (2010).
[CrossRef]

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Brown, C. T. A.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Cai, X.

B. K. Nelson, X. Cai, and A. Nebenführ, “A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants,” Plant J.51(6), 1126–1136 (2007).
[CrossRef] [PubMed]

Campbell, P.

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

Comrie, M.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Dholakia, K.

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Dong, C. Y.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Eapen, S.

S. Eapen, “Pollen grains as a target for introduction of foreign genes into plants: an assessment,” Physiol. Mol. Biol. Plants17(1), 1–8 (2011).
[CrossRef] [PubMed]

Fernando, D. D.

D. D. Fernando, J. L. Richards, and J. R. Kikkert, “In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen,” Plant Cell Rep.25(5), 450–456 (2006).
[CrossRef] [PubMed]

Fouad, O. O.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Garces-Chavez, V.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Greulich, K. O.

G. Weber, S. Monajembashi, K. O. Greulich, and J. Wolfrum, “Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells,” Naturwissenschaften75(1), 35–36 (1988).
[CrossRef]

Greulich, K.-O.

G. Weber, S. Monajembashi, J. Wolfrum, and K.-O. Greulich, “Genetic changes induced in higher plant cells by a laser microbeam,” Physiol. Plant.79(1), 190–193 (1990).
[CrossRef]

Grill, S.

Gunn-Moore, F.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Gunn-Moore, F. J.

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

Hoagland, D. R.

D. R. Hoagland and D. I. Arnon, “The water-culture method for growing plants without soil,” Circular. California Agricultural Experiment Station347, 1–32 (1950).

Hu, B. Y.

W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006).
[CrossRef] [PubMed]

Hu, X.-H.

W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006).
[CrossRef] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B.81(8), 1015–1047 (2005).
[CrossRef]

Jacobs, P.

H. Schinkel, P. Jacobs, S. Schillberg, and M. Wehner, “Infrared picosecond laser for perforation of single plant cells,” Biotechnol. Bioeng.99(1), 244–248 (2008).
[CrossRef] [PubMed]

Kereim, M. A.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Khmel’, I.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

Kikkert, J. R.

D. D. Fernando, J. L. Richards, and J. R. Kikkert, “In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen,” Plant Cell Rep.25(5), 450–456 (2006).
[CrossRef] [PubMed]

Koksharova, O.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

Li, Z.

Z. Li, S. Renneckar, and J. Barone, “Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose,” Cellulose17(1), 57–68 (2010).
[CrossRef]

Masters, B. R.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Monajembashi, S.

G. Weber, S. Monajembashi, J. Wolfrum, and K.-O. Greulich, “Genetic changes induced in higher plant cells by a laser microbeam,” Physiol. Plant.79(1), 190–193 (1990).
[CrossRef]

G. Weber, S. Monajembashi, K. O. Greulich, and J. Wolfrum, “Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells,” Naturwissenschaften75(1), 35–36 (1988).
[CrossRef]

Müller, G.

R. Senz and G. Müller, “Laser in medicine,” Berich. Bunsen Gesell.93(3), 269–277 (1989).
[CrossRef]

Murashige, T.

T. Murashige and F. Skoog, “A Revised medium for rapid growth and bio assays with tobacco tissue cultures,” Physiol. Plant.15(3), 473–497 (1962).
[CrossRef]

Nadtochenko, V.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

Nebenführ, A.

B. K. Nelson, X. Cai, and A. Nebenführ, “A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants,” Plant J.51(6), 1126–1136 (2007).
[CrossRef] [PubMed]

Nelson, B. K.

B. K. Nelson, X. Cai, and A. Nebenführ, “A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants,” Plant J.51(6), 1126–1136 (2007).
[CrossRef] [PubMed]

Newton, R. J.

W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B.81(8), 1015–1047 (2005).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B.81(8), 1015–1047 (2005).
[CrossRef]

Radtsig, M.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

Renneckar, S.

Z. Li, S. Renneckar, and J. Barone, “Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose,” Cellulose17(1), 57–68 (2010).
[CrossRef]

Richards, J. L.

D. D. Fernando, J. L. Richards, and J. R. Kikkert, “In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen,” Plant Cell Rep.25(5), 450–456 (2006).
[CrossRef] [PubMed]

Sarkisov, O.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

Schillberg, S.

H. Schinkel, P. Jacobs, S. Schillberg, and M. Wehner, “Infrared picosecond laser for perforation of single plant cells,” Biotechnol. Bioeng.99(1), 244–248 (2008).
[CrossRef] [PubMed]

Schinkel, H.

H. Schinkel, P. Jacobs, S. Schillberg, and M. Wehner, “Infrared picosecond laser for perforation of single plant cells,” Biotechnol. Bioeng.99(1), 244–248 (2008).
[CrossRef] [PubMed]

Senz, R.

R. Senz and G. Müller, “Laser in medicine,” Berich. Bunsen Gesell.93(3), 269–277 (1989).
[CrossRef]

Skoog, F.

T. Murashige and F. Skoog, “A Revised medium for rapid growth and bio assays with tobacco tissue cultures,” Physiol. Plant.15(3), 473–497 (1962).
[CrossRef]

So, P. T. C.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Stelzer, E. H. K.

Stevenson, D. J.

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Tang, W.

W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006).
[CrossRef] [PubMed]

Tsampoula, X.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B.81(8), 1015–1047 (2005).
[CrossRef]

Webb, W. W.

C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,” Bioimaging4(3), 198–207 (1996).
[CrossRef]

Weber, G.

G. Weber, S. Monajembashi, J. Wolfrum, and K.-O. Greulich, “Genetic changes induced in higher plant cells by a laser microbeam,” Physiol. Plant.79(1), 190–193 (1990).
[CrossRef]

G. Weber, S. Monajembashi, K. O. Greulich, and J. Wolfrum, “Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells,” Naturwissenschaften75(1), 35–36 (1988).
[CrossRef]

Wehner, M.

H. Schinkel, P. Jacobs, S. Schillberg, and M. Wehner, “Infrared picosecond laser for perforation of single plant cells,” Biotechnol. Bioeng.99(1), 244–248 (2008).
[CrossRef] [PubMed]

Weidner, D. A.

W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006).
[CrossRef] [PubMed]

Williams, R. M.

C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,” Bioimaging4(3), 198–207 (1996).
[CrossRef]

Wolfrum, J.

G. Weber, S. Monajembashi, J. Wolfrum, and K.-O. Greulich, “Genetic changes induced in higher plant cells by a laser microbeam,” Physiol. Plant.79(1), 190–193 (1990).
[CrossRef]

G. Weber, S. Monajembashi, K. O. Greulich, and J. Wolfrum, “Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells,” Naturwissenschaften75(1), 35–36 (1988).
[CrossRef]

Xu, C.

C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,” Bioimaging4(3), 198–207 (1996).
[CrossRef]

Yehia, M. A.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Zalesskii, A.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

Zipfel, W.

C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,” Bioimaging4(3), 198–207 (1996).
[CrossRef]

Annu. Rev. Biomed. Eng.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Appl. Phys. B.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B.81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007).
[CrossRef]

Berich. Bunsen Gesell.

R. Senz and G. Müller, “Laser in medicine,” Berich. Bunsen Gesell.93(3), 269–277 (1989).
[CrossRef]

Bioimaging

C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,” Bioimaging4(3), 198–207 (1996).
[CrossRef]

Biotechnol. Bioeng.

H. Schinkel, P. Jacobs, S. Schillberg, and M. Wehner, “Infrared picosecond laser for perforation of single plant cells,” Biotechnol. Bioeng.99(1), 244–248 (2008).
[CrossRef] [PubMed]

Cellulose

Z. Li, S. Renneckar, and J. Barone, “Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose,” Cellulose17(1), 57–68 (2010).
[CrossRef]

Circular. California Agricultural Experiment Station

D. R. Hoagland and D. I. Arnon, “The water-culture method for growing plants without soil,” Circular. California Agricultural Experiment Station347, 1–32 (1950).

J. Microsc.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. R. Soc. Interface

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

Nanotechnol. Russ.

Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011).
[CrossRef]

Naturwissenschaften

G. Weber, S. Monajembashi, K. O. Greulich, and J. Wolfrum, “Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells,” Naturwissenschaften75(1), 35–36 (1988).
[CrossRef]

Photochem. Photobiol. Sci.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Physiol. Mol. Biol. Plants

S. Eapen, “Pollen grains as a target for introduction of foreign genes into plants: an assessment,” Physiol. Mol. Biol. Plants17(1), 1–8 (2011).
[CrossRef] [PubMed]

Physiol. Plant.

G. Weber, S. Monajembashi, J. Wolfrum, and K.-O. Greulich, “Genetic changes induced in higher plant cells by a laser microbeam,” Physiol. Plant.79(1), 190–193 (1990).
[CrossRef]

T. Murashige and F. Skoog, “A Revised medium for rapid growth and bio assays with tobacco tissue cultures,” Physiol. Plant.15(3), 473–497 (1962).
[CrossRef]

Plant Cell Rep.

D. D. Fernando, J. L. Richards, and J. R. Kikkert, “In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen,” Plant Cell Rep.25(5), 450–456 (2006).
[CrossRef] [PubMed]

Plant J.

B. K. Nelson, X. Cai, and A. Nebenführ, “A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants,” Plant J.51(6), 1126–1136 (2007).
[CrossRef] [PubMed]

Plant Sci.

W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006).
[CrossRef] [PubMed]

Other

S. C. Jeoung, M. S. Sidhu, J. S. Yahng, H. J. Shin, and G. Y. Baik, Advances in Lasers and Electro Optics (InTech, 2010), Chap. 35.

G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning (Marcel Dekker, 2005).

Supplementary Material (3)

» Media 1: MP4 (1478 KB)     
» Media 2: MP4 (1889 KB)     
» Media 3: MP4 (1089 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of the proposed mechanism by which laser-induced plasma formation could disrupt plant cell wall and plasma membrane, allowing for uptake of fluorophores through a transient pore. (a) Representation of cell structure within intact plant tissue at the site of laser focus. (b) Approximation of ideal laser ablation. (c) Broken cell wall and perforated plasma membrane allow external macromolecules to flow into the cellular space along a concentration gradient. (d) The transient nature of the plasma membrane pore allows it to re-seal, leaving slight damage to the cell wall but internalization of extracellular material.

Fig. 2
Fig. 2

Scanning electron microscope image of the hole and peripheral effects generated at 4.6 x 1013 W/cm2 irradiance for 5.1 ms exposure time in PCA-TEMPO nanocellulose (2500X magnification).

Fig. 3
Fig. 3

Timecourse images of Arabidopsis expressing CFP targeted to the vacuole membrane (indicated here by blue false-coloring). (a) Over a two minute time period following a 1.2 x 1013 W/cm2 laser exposure, the vacuole shrinks and then rebounds (Media 1), possibly due to a rapid incursion of exogenous material. (b) Exposure to the same laser irradiance causes the vacuole to contract and break into three discrete units (Media 2), indicating that cell viability has been compromised. Red circle = site of laser scan. Bar = 20 µm.

Fig. 4
Fig. 4

Optoperforated cells exhibiting 10 kDa dextran-cascade blue dye conjugate uptake 0.5 h post laser exposure (a), and 72 h post exposure (b, c). Panel (b) is at the zero Z-plane of focus and (c) is at −14. Asterisks = OP cells visible in plane. Bar = 50 µm.

Fig. 5
Fig. 5

Arabidopsis stem epidermal cells subjected to laser optoperforation at 7.7 x 1012 W/cm2 for 0.64 µs showed hole formation, where indicated by red circles, less than 2.5 µm in diameter. Bar = 20 µm.

Fig. 6
Fig. 6

Confirmation of symplastic uptake of cascade blue dye over 5 minutes. Vacuolar membrane is visible as well as the outline of other organelles, suggesting dye is dispersed inside the plasma membrane (Media 3). Bar = 50 µm.

Fig. 7
Fig. 7

Time-resolved cascade blue conjugated dextran fluorescent intensity within optoperforated cell (a), indicating rapid influx of dye through artificial pore, and subsequent pore sealing and dye redistribution throughout cellular confines (b).

Fig. 8
Fig. 8

Cascade blue-10 kDa dextran appearance within cells before (a) and after (b) treatment with 5 M NaCl. The addition of saline solution changes the focal plane and orientation of the root so cells of interest are denoted by letters A, B, and C. Bar = 50 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I( r,z )=I( 0,0 )Exp[ 2( r 2 α 2 + z 2 β 2 ) ]
β α = ( 32cosθcos2θ ) 1/2 1cosθ
I peak ( 0,0 )= 2 P peak π α 2 = 2 P avg ντπ α 2
d= K 1/ e 2 λf/#

Metrics