Abstract

Accessing ultrafast photoinduced molecular dynamics on a femtosecond time-scale with vibrational selectivity and at the same time sub-diffraction limited spatial resolution would help to gain important information about ultrafast processes in nanostructures. While nonlinear Raman techniques have been used to obtain highly resolved images in combination with near-field microscopy, the use of femtosecond laser pulses in electronic resonance still constitutes a big challenge. Here, we present our first results on coherent anti-Stokes Raman scattering (fs-CARS) with femtosecond laser pulses detected in the near-field using scanning near-field optical microscopy (SNOM). We demonstrate that highly spatially resolved images can be obtained from poly(3-hexylthiophene) (P3HT) nano-structures where the fs-CARS process was in resonance with the P3HT absorption and with characteristic P3HT vibrational modes without destruction of the samples. Sub-diffraction limited lateral resolution is achieved. Especially the height resolution clearly surpasses that obtained with standard microCARS. These results will be the basis for future investigations of mode-selective dynamics in the near field.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Nicholson and F. A. Castro, “Organic photovoltaics: principles and techniques for nanometre scale characterization,” Nanotechnol.21, 492001 (2010).
    [CrossRef]
  2. K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Carrier formation dynamics of organic photovoltaics as investigated by time-resolved spectroscopy,” Adv. Opt. Tech.Doi (2012).
    [CrossRef]
  3. E. Kilmov, X. L. W. Yang, G. G. Hoffmann, and J. Loos, “Scanning near-field and confocal Raman microscopic investigation of P3HT–PCBM systems for solar cell applications,” Macromolecules39, 4493–4496 (2006).
    [CrossRef]
  4. T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
    [CrossRef]
  5. V. Namboodiri, A. Scaria, M. Namboodiri, and A. Materny, “Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy,” Laser Phys.19, 154–161 (2009).
    [CrossRef]
  6. M. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett.7, 350–352 (1982).
    [CrossRef] [PubMed]
  7. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Ref. Lett.82, 4142–4145 (1999).
    [CrossRef]
  8. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1, 883–909 (2008).
    [CrossRef]
  9. C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
    [CrossRef] [PubMed]
  10. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80, 1505–1507 (2002).
    [CrossRef]
  11. E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science257, 189–195 (1992).
    [CrossRef] [PubMed]
  12. E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60, 2484–2487 (1992).
    [CrossRef]
  13. M. Lucas and E. Riedo, “Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science,” Rev. Sci. Instrum.83, 0611011 (2012).
    [CrossRef]
  14. L. Novotny and J. S. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
    [CrossRef] [PubMed]
  15. H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264, 1740–1745 (1994).
    [CrossRef] [PubMed]
  16. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
    [CrossRef]
  17. K. Karki, M. Namboodiri, T. Z. Khan, and A. Materny, “Pump-probe scanning near-field optical microscopy: sub-wavelength resolution chemical imaging and ultrafast local dynamics,” Appl. Phys. Lett.100, 1531031 (2012).
    [CrossRef]
  18. V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.40, 1336–1337 (2009).
    [CrossRef]
  19. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99, 2891–2927 (1999).
    [CrossRef]
  20. R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Sayakally, “Chemically selective imaging of sub-cellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 8489–8492 (2002).
    [CrossRef]
  21. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett.92, 2208011 (2004).
  22. K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, and S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43, 656–661 (2012).
    [CrossRef]
  23. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
    [CrossRef]
  24. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
    [CrossRef]
  25. S. Falke, P. Eravuchira, A. Materny, and C. Lienau, “Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends,” J. Raman Spectrosc.42, 1897–1900 (2011).
    [CrossRef]
  26. X. Feng and X. Wang, “Thermophysical properties of free-standing micrometer-thick poly(3-hexylthiophene) films,” Thin Solid Films519, 5700–5705 (2011).
    [CrossRef]
  27. S. Cook, A. Furube, and R. Katoh, “Analysis of the excited states of regioregular polythiophene P3HT,” Energy Environ. Sci.1, 294–299 (2008).
    [CrossRef]
  28. Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express14, 3942–3951 (2006).
    [CrossRef] [PubMed]
  29. L. Chen, H. Zhiwei, L. Fake, Z. Wei, W. H. Dietmar, and S. Colin, “Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging,” Opt. Express15, 4118–4131 (2007).
    [CrossRef]
  30. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys59, 427–471 (1996).
    [CrossRef]
  31. S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

2012

M. Lucas and E. Riedo, “Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science,” Rev. Sci. Instrum.83, 0611011 (2012).
[CrossRef]

K. Karki, M. Namboodiri, T. Z. Khan, and A. Materny, “Pump-probe scanning near-field optical microscopy: sub-wavelength resolution chemical imaging and ultrafast local dynamics,” Appl. Phys. Lett.100, 1531031 (2012).
[CrossRef]

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, and S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43, 656–661 (2012).
[CrossRef]

2011

S. Falke, P. Eravuchira, A. Materny, and C. Lienau, “Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends,” J. Raman Spectrosc.42, 1897–1900 (2011).
[CrossRef]

X. Feng and X. Wang, “Thermophysical properties of free-standing micrometer-thick poly(3-hexylthiophene) films,” Thin Solid Films519, 5700–5705 (2011).
[CrossRef]

2010

S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

P. G. Nicholson and F. A. Castro, “Organic photovoltaics: principles and techniques for nanometre scale characterization,” Nanotechnol.21, 492001 (2010).
[CrossRef]

2009

V. Namboodiri, A. Scaria, M. Namboodiri, and A. Materny, “Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy,” Laser Phys.19, 154–161 (2009).
[CrossRef]

V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.40, 1336–1337 (2009).
[CrossRef]

2008

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1, 883–909 (2008).
[CrossRef]

S. Cook, A. Furube, and R. Katoh, “Analysis of the excited states of regioregular polythiophene P3HT,” Energy Environ. Sci.1, 294–299 (2008).
[CrossRef]

2007

L. Chen, H. Zhiwei, L. Fake, Z. Wei, W. H. Dietmar, and S. Colin, “Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging,” Opt. Express15, 4118–4131 (2007).
[CrossRef]

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
[CrossRef]

2006

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express14, 3942–3951 (2006).
[CrossRef] [PubMed]

E. Kilmov, X. L. W. Yang, G. G. Hoffmann, and J. Loos, “Scanning near-field and confocal Raman microscopic investigation of P3HT–PCBM systems for solar cell applications,” Macromolecules39, 4493–4496 (2006).
[CrossRef]

L. Novotny and J. S. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef] [PubMed]

2005

C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
[CrossRef] [PubMed]

2004

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett.92, 2208011 (2004).

2002

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Sayakally, “Chemically selective imaging of sub-cellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 8489–8492 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80, 1505–1507 (2002).
[CrossRef]

T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
[CrossRef]

2000

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Ref. Lett.82, 4142–4145 (1999).
[CrossRef]

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99, 2891–2927 (1999).
[CrossRef]

1997

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
[CrossRef]

1996

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys59, 427–471 (1996).
[CrossRef]

1994

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264, 1740–1745 (1994).
[CrossRef] [PubMed]

1992

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60, 2484–2487 (1992).
[CrossRef]

1982

Baro, A. M.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
[CrossRef]

Betzig, E.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264, 1740–1745 (1994).
[CrossRef] [PubMed]

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60, 2484–2487 (1992).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
[CrossRef]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80, 1505–1507 (2002).
[CrossRef]

Castro, F. A.

P. G. Nicholson and F. A. Castro, “Organic photovoltaics: principles and techniques for nanometre scale characterization,” Nanotechnol.21, 492001 (2010).
[CrossRef]

Catalan, F. C.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, and S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43, 656–661 (2012).
[CrossRef]

Chen, L.

Cheng, J. X.

Colchero, J.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
[CrossRef]

Colin, S.

Cook, S.

S. Cook, A. Furube, and R. Katoh, “Analysis of the excited states of regioregular polythiophene P3HT,” Energy Environ. Sci.1, 294–299 (2008).
[CrossRef]

Cote, D.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
[CrossRef] [PubMed]

Deckert, V.

V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.40, 1336–1337 (2009).
[CrossRef]

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

Dietmar, W. H.

Duncan, M.

Dunn, R. C.

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99, 2891–2927 (1999).
[CrossRef]

Engel, V.

T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
[CrossRef]

Eravuchira, P.

S. Falke, P. Eravuchira, A. Materny, and C. Lienau, “Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends,” J. Raman Spectrosc.42, 1897–1900 (2011).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1, 883–909 (2008).
[CrossRef]

C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
[CrossRef] [PubMed]

Fake, L.

Falke, S.

S. Falke, P. Eravuchira, A. Materny, and C. Lienau, “Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends,” J. Raman Spectrosc.42, 1897–1900 (2011).
[CrossRef]

Feng, X.

X. Feng and X. Wang, “Thermophysical properties of free-standing micrometer-thick poly(3-hexylthiophene) films,” Thin Solid Films519, 5700–5705 (2011).
[CrossRef]

Fernandez, R.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60, 2484–2487 (1992).
[CrossRef]

Fu, Y.

Furube, A.

S. Cook, A. Furube, and R. Katoh, “Analysis of the excited states of regioregular polythiophene P3HT,” Energy Environ. Sci.1, 294–299 (2008).
[CrossRef]

Furusawa, K.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, and S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43, 656–661 (2012).
[CrossRef]

Gomez-Herrero, J.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
[CrossRef]

Gomez-Rodriguez, J. M.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
[CrossRef]

Haber, L. H.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Sayakally, “Chemically selective imaging of sub-cellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 8489–8492 (2002).
[CrossRef]

Han, L.

K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Carrier formation dynamics of organic photovoltaics as investigated by time-resolved spectroscopy,” Adv. Opt. Tech.Doi (2012).
[CrossRef]

Harris, T. D.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264, 1740–1745 (1994).
[CrossRef] [PubMed]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett.92, 2208011 (2004).

Hayazawa, N.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, and S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43, 656–661 (2012).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett.92, 2208011 (2004).

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
[CrossRef]

Hess, H. F.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264, 1740–1745 (1994).
[CrossRef] [PubMed]

Hoffmann, G. G.

E. Kilmov, X. L. W. Yang, G. G. Hoffmann, and J. Loos, “Scanning near-field and confocal Raman microscopic investigation of P3HT–PCBM systems for solar cell applications,” Macromolecules39, 4493–4496 (2006).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Ref. Lett.82, 4142–4145 (1999).
[CrossRef]

Horcas, I.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
[CrossRef]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett.92, 2208011 (2004).

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett.92, 2208011 (2004).

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
[CrossRef]

Ito, M.

K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Carrier formation dynamics of organic photovoltaics as investigated by time-resolved spectroscopy,” Adv. Opt. Tech.Doi (2012).
[CrossRef]

Joo, O. S.

S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

Kamat, S. V.

S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

Kamioka, H.

K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Carrier formation dynamics of organic photovoltaics as investigated by time-resolved spectroscopy,” Adv. Opt. Tech.Doi (2012).
[CrossRef]

Karki, K.

K. Karki, M. Namboodiri, T. Z. Khan, and A. Materny, “Pump-probe scanning near-field optical microscopy: sub-wavelength resolution chemical imaging and ultrafast local dynamics,” Appl. Phys. Lett.100, 1531031 (2012).
[CrossRef]

Katoh, R.

S. Cook, A. Furube, and R. Katoh, “Analysis of the excited states of regioregular polythiophene P3HT,” Energy Environ. Sci.1, 294–299 (2008).
[CrossRef]

Kawata, S.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, and S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43, 656–661 (2012).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett.92, 2208011 (2004).

Khan, T. Z.

K. Karki, M. Namboodiri, T. Z. Khan, and A. Materny, “Pump-probe scanning near-field optical microscopy: sub-wavelength resolution chemical imaging and ultrafast local dynamics,” Appl. Phys. Lett.100, 1531031 (2012).
[CrossRef]

Kiefer, W.

T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
[CrossRef]

Kilmov, E.

E. Kilmov, X. L. W. Yang, G. G. Hoffmann, and J. Loos, “Scanning near-field and confocal Raman microscopic investigation of P3HT–PCBM systems for solar cell applications,” Macromolecules39, 4493–4496 (2006).
[CrossRef]

Lee, L. F.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Sayakally, “Chemically selective imaging of sub-cellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 8489–8492 (2002).
[CrossRef]

Lienau, C.

S. Falke, P. Eravuchira, A. Materny, and C. Lienau, “Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends,” J. Raman Spectrosc.42, 1897–1900 (2011).
[CrossRef]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
[CrossRef] [PubMed]

Loos, J.

E. Kilmov, X. L. W. Yang, G. G. Hoffmann, and J. Loos, “Scanning near-field and confocal Raman microscopic investigation of P3HT–PCBM systems for solar cell applications,” Macromolecules39, 4493–4496 (2006).
[CrossRef]

Lucas, M.

M. Lucas and E. Riedo, “Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science,” Rev. Sci. Instrum.83, 0611011 (2012).
[CrossRef]

Maksimenka, R.

T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
[CrossRef]

Manuccia, T. J.

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

Materny, A.

K. Karki, M. Namboodiri, T. Z. Khan, and A. Materny, “Pump-probe scanning near-field optical microscopy: sub-wavelength resolution chemical imaging and ultrafast local dynamics,” Appl. Phys. Lett.100, 1531031 (2012).
[CrossRef]

S. Falke, P. Eravuchira, A. Materny, and C. Lienau, “Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends,” J. Raman Spectrosc.42, 1897–1900 (2011).
[CrossRef]

V. Namboodiri, A. Scaria, M. Namboodiri, and A. Materny, “Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy,” Laser Phys.19, 154–161 (2009).
[CrossRef]

T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
[CrossRef]

Moritomo, Y.

K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Carrier formation dynamics of organic photovoltaics as investigated by time-resolved spectroscopy,” Adv. Opt. Tech.Doi (2012).
[CrossRef]

Namboodiri, M.

K. Karki, M. Namboodiri, T. Z. Khan, and A. Materny, “Pump-probe scanning near-field optical microscopy: sub-wavelength resolution chemical imaging and ultrafast local dynamics,” Appl. Phys. Lett.100, 1531031 (2012).
[CrossRef]

V. Namboodiri, A. Scaria, M. Namboodiri, and A. Materny, “Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy,” Laser Phys.19, 154–161 (2009).
[CrossRef]

Namboodiri, V.

V. Namboodiri, A. Scaria, M. Namboodiri, and A. Materny, “Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy,” Laser Phys.19, 154–161 (2009).
[CrossRef]

Nicholson, P. G.

P. G. Nicholson and F. A. Castro, “Organic photovoltaics: principles and techniques for nanometre scale characterization,” Nanotechnol.21, 492001 (2010).
[CrossRef]

Novotny, L.

L. Novotny and J. S. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
[CrossRef]

Okamoto, T.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, and S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43, 656–661 (2012).
[CrossRef]

Pfeiffer, L. N.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264, 1740–1745 (1994).
[CrossRef] [PubMed]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
[CrossRef]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
[CrossRef] [PubMed]

Puorishaag, M.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
[CrossRef] [PubMed]

Puri, R. K.

S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

Puri, V.

S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

Reintjes, J.

Riedo, E.

M. Lucas and E. Riedo, “Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science,” Rev. Sci. Instrum.83, 0611011 (2012).
[CrossRef]

Sayakally, R. J.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Sayakally, “Chemically selective imaging of sub-cellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 8489–8492 (2002).
[CrossRef]

Scaria, A.

V. Namboodiri, A. Scaria, M. Namboodiri, and A. Materny, “Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy,” Laser Phys.19, 154–161 (2009).
[CrossRef]

Schaller, R. D.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Sayakally, “Chemically selective imaging of sub-cellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 8489–8492 (2002).
[CrossRef]

Schmitt, M.

T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
[CrossRef]

Shi, R.

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

Siebert, T.

T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
[CrossRef]

Stranick, J. S.

L. Novotny and J. S. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef] [PubMed]

Tamboli, S. H.

S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science257, 189–195 (1992).
[CrossRef] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80, 1505–1507 (2002).
[CrossRef]

Wang, H.

Wang, X.

X. Feng and X. Wang, “Thermophysical properties of free-standing micrometer-thick poly(3-hexylthiophene) films,” Thin Solid Films519, 5700–5705 (2011).
[CrossRef]

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys59, 427–471 (1996).
[CrossRef]

Wei, Z.

Weiner, J. S.

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60, 2484–2487 (1992).
[CrossRef]

West, K. W.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264, 1740–1745 (1994).
[CrossRef] [PubMed]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1, 883–909 (2008).
[CrossRef]

C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80, 1505–1507 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Ref. Lett.82, 4142–4145 (1999).
[CrossRef]

Yadava, J. B.

S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

Yang, X. L. W.

E. Kilmov, X. L. W. Yang, G. G. Hoffmann, and J. Loos, “Scanning near-field and confocal Raman microscopic investigation of P3HT–PCBM systems for solar cell applications,” Macromolecules39, 4493–4496 (2006).
[CrossRef]

Yasuda, T.

K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Carrier formation dynamics of organic photovoltaics as investigated by time-resolved spectroscopy,” Adv. Opt. Tech.Doi (2012).
[CrossRef]

Yonezawa, K.

K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Carrier formation dynamics of organic photovoltaics as investigated by time-resolved spectroscopy,” Adv. Opt. Tech.Doi (2012).
[CrossRef]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

Zhiwei, H.

Ziegelbauer, J.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Sayakally, “Chemically selective imaging of sub-cellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 8489–8492 (2002).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Ref. Lett.82, 4142–4145 (1999).
[CrossRef]

Annu. Rev. Anal. Chem.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1, 883–909 (2008).
[CrossRef]

Annu. Rev. Phys. Chem.

L. Novotny and J. S. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80, 1505–1507 (2002).
[CrossRef]

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60, 2484–2487 (1992).
[CrossRef]

K. Karki, M. Namboodiri, T. Z. Khan, and A. Materny, “Pump-probe scanning near-field optical microscopy: sub-wavelength resolution chemical imaging and ultrafast local dynamics,” Appl. Phys. Lett.100, 1531031 (2012).
[CrossRef]

Chem. Rev.

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99, 2891–2927 (1999).
[CrossRef]

Energy Environ. Sci.

S. Cook, A. Furube, and R. Katoh, “Analysis of the excited states of regioregular polythiophene P3HT,” Energy Environ. Sci.1, 294–299 (2008).
[CrossRef]

J. Appl. Phys.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81, 2492–2498 (1997).
[CrossRef]

J. Chem. Phys.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112, 7761–7774 (2000).
[CrossRef]

J. Optelectron. Adv. M.

S. V. Kamat, S. H. Tamboli, V. Puri, R. K. Puri, J. B. Yadava, and O. S. Joo, “Optical and electrical properties of polythiophene thin films: effect of post deposition heating,” J. Optelectron. Adv. M.12, 2301–2305 (2010).

J. Phys. Chem. B

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Sayakally, “Chemically selective imaging of sub-cellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 8489–8492 (2002).
[CrossRef]

J. Raman Spectrosc

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, and S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43, 656–661 (2012).
[CrossRef]

J. Raman Spectrosc.

V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.40, 1336–1337 (2009).
[CrossRef]

S. Falke, P. Eravuchira, A. Materny, and C. Lienau, “Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends,” J. Raman Spectrosc.42, 1897–1900 (2011).
[CrossRef]

T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, and M. Schmitt, “The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of β-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering,” J. Raman Spectrosc.33, 844–854 (2002).
[CrossRef]

Laser Phys.

V. Namboodiri, A. Scaria, M. Namboodiri, and A. Materny, “Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy,” Laser Phys.19, 154–161 (2009).
[CrossRef]

Macromolecules

E. Kilmov, X. L. W. Yang, G. G. Hoffmann, and J. Loos, “Scanning near-field and confocal Raman microscopic investigation of P3HT–PCBM systems for solar cell applications,” Macromolecules39, 4493–4496 (2006).
[CrossRef]

Nanotechnol.

P. G. Nicholson and F. A. Castro, “Organic photovoltaics: principles and techniques for nanometre scale characterization,” Nanotechnol.21, 492001 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Ref. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Ref. Lett.82, 4142–4145 (1999).
[CrossRef]

Phys. Rev. Lett.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure,” Phys. Rev. Lett.92, 2208011 (2004).

Proc. Natl. Acad. Sci. USA

C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807–16812 (2005).
[CrossRef] [PubMed]

Rep. Prog. Phys

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys59, 427–471 (1996).
[CrossRef]

Rev. Sci. Instrum.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78, 0137051 (2007).
[CrossRef]

M. Lucas and E. Riedo, “Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science,” Rev. Sci. Instrum.83, 0611011 (2012).
[CrossRef]

Science

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science257, 189–195 (1992).
[CrossRef] [PubMed]

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264, 1740–1745 (1994).
[CrossRef] [PubMed]

Thin Solid Films

X. Feng and X. Wang, “Thermophysical properties of free-standing micrometer-thick poly(3-hexylthiophene) films,” Thin Solid Films519, 5700–5705 (2011).
[CrossRef]

Other

K. Yonezawa, M. Ito, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Carrier formation dynamics of organic photovoltaics as investigated by time-resolved spectroscopy,” Adv. Opt. Tech.Doi (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental scheme of the SNOM-CARS and microCARS experiments. The lasers are focused from the bottom and the transmitted signal is collected in the forward direction with an objective (far-field microCARS) or SNOM tip (near-field SNOM-CARS).

Fig. 2
Fig. 2

MicroCARS image (a), SNOM-CARS image (b), AFM topography (c) and CARS intensity profile (d), along a section parallel to the x direction of the images (3 × 3 μm2 area) are displayed. The color code has been adapted to the full intensity range of the image. The structure seen on the right side of the AFM image has a thickness of ≈ 145 nm.

Fig. 3
Fig. 3

MicroCARS image (a), SNOM-CARS image (b), AFM topography (c) and CARS intensity profile (d), along a section parallel to the x direction of the images (20 × 20 μm2 area) are displayed. The color code has been adapted to the full intensity range of the image. The roughness feature on the right side of the AFM has a thickness of ≈ 1.5 μm.

Fig. 4
Fig. 4

In order to estimate the temporal resolution of the CARS interaction, the cross correlation between the femtosecond pump and Stokes pulses has been measured using the microCARS and the SNOM-CARS setup. The full width at half maximum (≈ 150 fs) of the near-field and the far-field cross correlation traces reflects the respective instrument response functions, which are equal for microCARS and SNOM-CARS.

Metrics