Abstract

We present a novel concept adaptable to any kind of STED microscope in order to expand the limited number of compatible dyes for performing super resolution imaging. The approach is based on an intensity modulated excitation beam in combination with a frequency dependent detection in the form of a standard lock-in amplifier. This enables to unmix fluorescence signal originated by the excitation beam from the fluorescence caused by the STED beam. The benefit of this concept is demonstrated by imaging biological samples as well as fluorescent spheres, whose spectrum does not allow STED imaging in the conventional way. Our concept is suitable with CW or pulsed STED microscope and can thereby be seen as a general improvement adaptable to any existing setup.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
STED microscopy with a supercontinuum laser source

Dominik Wildanger, Eva Rittweger, Lars Kastrup, and Stefan W. Hell
Opt. Express 16(13) 9614-9621 (2008)

Two-photon excitation and stimulated emission depletion by a single wavelength

Teodora Scheul, Ciro D’Amico, Irène Wang, and Jean-Claude Vial
Opt. Express 19(19) 18036-18048 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  2. M. A. Lauterbach, “Finding, defining and breaking the diffraction barrier in microscopy - a historical perspective,” Optical Nanoscopy 1(1), 8 (2012).
    [Crossref]
  3. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv Für Mikroskopische Anatomie 9(1), 413–418 (1873).
    [Crossref]
  4. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
    [Crossref] [PubMed]
  5. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
    [Crossref] [PubMed]
  6. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
    [Crossref] [PubMed]
  7. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
    [Crossref] [PubMed]
  8. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
    [Crossref] [PubMed]
  9. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
    [Crossref] [PubMed]
  10. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
    [Crossref] [PubMed]
  11. T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011).
    [Crossref] [PubMed]
  12. M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express 20(5), 5243–5263 (2012).
    [Crossref] [PubMed]
  13. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008).
    [Crossref] [PubMed]
  14. J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
    [Crossref] [PubMed]
  15. G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
    [Crossref] [PubMed]
  16. P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
    [Crossref] [PubMed]
  17. B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).
  18. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
    [Crossref] [PubMed]
  19. C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
    [Crossref] [PubMed]
  20. B. Harke, “3D STED microscopy with pulsed and continuous wave lasers,” Niedersächsische Staats-und Universitätsbibliothek Göttingen (2008).
  21. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
    [Crossref] [PubMed]
  22. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
    [Crossref] [PubMed]
  23. N. Chen, C. H. Wong, and C. J. Sheppard, “Focal modulation microscopy,” Opt. Express 16(23), 18764–18769 (2008).
    [Crossref] [PubMed]
  24. G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20(5), 5225–5236 (2012).
    [Crossref] [PubMed]
  25. R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).
  26. T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy with reduced number of state transition cycles,” Opt. Express 19(6), 5644–5657 (2011).
    [Crossref] [PubMed]
  27. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
    [Crossref] [PubMed]

2012 (6)

M. A. Lauterbach, “Finding, defining and breaking the diffraction barrier in microscopy - a historical perspective,” Optical Nanoscopy 1(1), 8 (2012).
[Crossref]

M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express 20(5), 5243–5263 (2012).
[Crossref] [PubMed]

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20(5), 5225–5236 (2012).
[Crossref] [PubMed]

2011 (3)

T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy with reduced number of state transition cycles,” Opt. Express 19(6), 5644–5657 (2011).
[Crossref] [PubMed]

T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011).
[Crossref] [PubMed]

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

2010 (1)

R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).

2009 (4)

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[Crossref] [PubMed]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

2008 (6)

2007 (1)

2006 (1)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

2005 (1)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

2003 (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[Crossref] [PubMed]

1994 (1)

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv Für Mikroskopische Anatomie 9(1), 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv Für Mikroskopische Anatomie 9(1), 413–418 (1873).
[Crossref]

Auksorius, E.

Belov, V. N.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Benfenati, F.

Bewersdorf, J.

Bianchini, P.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
[Crossref] [PubMed]

Boruah, B. R.

Canale, C.

B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).

Chen, N.

Diaspro, A.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
[Crossref] [PubMed]

B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).

Ding, J. B.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

Dunsby, C.

Eggeling, C.

Egner, A.

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[Crossref] [PubMed]

Engelhardt, J.

T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy with reduced number of state transition cycles,” Opt. Express 19(6), 5644–5657 (2011).
[Crossref] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[Crossref] [PubMed]

Engler, A.

Forthmann, C.

R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).

French, P. M. W.

Galiani, S.

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
[Crossref] [PubMed]

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

Gould, T. J.

Harke, B.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
[Crossref] [PubMed]

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy with reduced number of state transition cycles,” Opt. Express 19(6), 5644–5657 (2011).
[Crossref] [PubMed]

R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[Crossref] [PubMed]

Haschke, H.

B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).

Hein, B.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Hell, S. W.

M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express 20(5), 5243–5263 (2012).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20(5), 5225–5236 (2012).
[Crossref] [PubMed]

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy with reduced number of state transition cycles,” Opt. Express 19(6), 5644–5657 (2011).
[Crossref] [PubMed]

R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).

G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[Crossref] [PubMed]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[Crossref] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[Crossref] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
[Crossref] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Jahn, R.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Jakobs, S.

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[Crossref] [PubMed]

Kamin, D.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Kasper, R.

R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).

Kastrup, L.

Keller, J.

Kennedy, G.

Lanigan, P. M. P.

Lasser, T.

Lauterbach, M. A.

M. A. Lauterbach, “Finding, defining and breaking the diffraction barrier in microscopy - a historical perspective,” Optical Nanoscopy 1(1), 8 (2012).
[Crossref]

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Leutenegger, M.

Lignani, G.

Medda, R.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Moneron, G.

Myers, J. R.

Neil, M. A. A.

Neumann, D.

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

Polyakova, S.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Ringemann, C.

M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express 20(5), 5243–5263 (2012).
[Crossref] [PubMed]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Rittweger, E.

Rizzoli, S. O.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Sabatini, B. L.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

Sandhoff, K.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Sauer, M.

R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).

Schmidt, R.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[Crossref] [PubMed]

Schönle, A.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[Crossref] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
[Crossref] [PubMed]

Schwarzmann, G.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Sheppard, C. J.

Staudt, T.

Takasaki, K. T.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

Tinnefeld, P.

R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).

Ullal, C. K.

Varghese Chacko, J.

B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).

Vicidomini, G.

von Middendorff, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Westphal, V.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

Wichmann, J.

Wildanger, D.

Willig, K. I.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Wong, C. H.

Wurm, C. A.

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[Crossref] [PubMed]

Archiv Für Mikroskopische Anatomie (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv Für Mikroskopische Anatomie 9(1), 413–418 (1873).
[Crossref]

Nat. Biotechnol. (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[Crossref] [PubMed]

Nat. Methods (2)

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[Crossref] [PubMed]

Nature (2)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Neuron (1)

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

Opt. Express (10)

G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[Crossref] [PubMed]

T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011).
[Crossref] [PubMed]

M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express 20(5), 5243–5263 (2012).
[Crossref] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
[Crossref] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[Crossref] [PubMed]

T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy with reduced number of state transition cycles,” Opt. Express 19(6), 5644–5657 (2011).
[Crossref] [PubMed]

N. Chen, C. H. Wong, and C. J. Sheppard, “Focal modulation microscopy,” Opt. Express 16(23), 18764–18769 (2008).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express 20(5), 5225–5236 (2012).
[Crossref] [PubMed]

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
[Crossref] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Optical Nanoscopy (1)

M. A. Lauterbach, “Finding, defining and breaking the diffraction barrier in microscopy - a historical perspective,” Optical Nanoscopy 1(1), 8 (2012).
[Crossref]

Phys. Rev. Lett. (1)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13546–13551 (2011).
[Crossref] [PubMed]

Science (1)

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Other (3)

B. Harke, “3D STED microscopy with pulsed and continuous wave lasers,” Niedersächsische Staats-und Universitätsbibliothek Göttingen (2008).

R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).

B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation on the effect of residuals of fluorescence on STED microscopy performances. Confocal image of a group of subdiffracted beads (upper row). Middle row: STED image of a single point emitter (effective point spread function) by assuming kex = 0.01*ksted and k’sted = 0 (left), k’sted = 0.1*ksted (middle) and k’sted = 0.5*ksted (right). Bottom row: STED image of a group of point emitters in sub-diffraction distance imaged by the above described effective point spread functions. Scale bars: 100 nm.

Fig. 2
Fig. 2

Schematic of the custom made STED microscope. AOM: Acousto optical modulator, PMT: photo multiplier tube, PP: phase plate.

Fig. 3
Fig. 3

(a) Excitation and Emission spectrum of red fluorescent spheres (Invitrogen). (b) fluorescence depletion curve measured in the classical mode (black) and in the modSTED configuration (red) for two different excitation powers of 7.1µW (squares) and 11.4µW (triangles). All power values are measured in front of the back aperture of the objective lens.

Fig. 4
Fig. 4

Comparison of STED images in conventional STED (top row) and ModSTED configuration for different STED powers (4.4 mW; 16.1 mW ; 44.5 mW; 124.5 mW)from left to right) imaging Red Fluorescent 40nm beads with 532nm excitation (11.4 µW) and 642nm STED beam. All power values measured at the back aperture of the objective lens. Confocal standard images (top row, left column) and filtered by lock-in Amplifier (bottom row, left image). Pixel dwell time: 120 µs. Bottom line: line profiles for each STED power value along the path indicated in the image. For better visualization all data were smoothed by a standard Gaussian low pass filter.

Fig. 5
Fig. 5

Imaging of microtubules immunolabeld by the dye ATTO550 and imaged in Confocal mode (a), conventional STED mode (b) and in modSTED (c) configuration. Excitation power 1.8 μW, STED power 180 mW. Pixel dwell time: 100 μs. All data is raw data without any additional post-processing computation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d N 1 ( t ) dt =( k f + k sted ) N 1 ( t )+( k ex +k ' sted ) N 0 ( t )
{ k sted = σ em ( λ sted ) I sted k ' sted = σ ex ( λ sted ) I sted k ex = σ ex ( λ ex ) I ex
N 1 = k ex +k ' sted k f + k sted + k ex +k ' sted

Metrics