Abstract

Full-field optical coherence tomography (FF-OCT) is a recent optical imaging technology based on low-coherence interference microscopy for imaging of semi-transparent samples with ~1 µm spatial resolution. FF-OCT produces en-face tomographic images obtained by arithmetic combination of interferometric images acquired by an array camera. In this paper, we demonstrate a unique multimodal FF-OCT system, capable of measuring simultaneously the intensity, the power spectrum and the phase-retardation of light backscattered by the sample being imaged. Compared to conventional FF-OCT, this multimodal system provides enhanced imaging contrasts at the price of a moderate increase in experimental complexity and cost.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef]
  2. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
    [CrossRef]
  3. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
    [CrossRef]
  4. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In-vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [CrossRef]
  5. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
    [CrossRef]
  6. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13(3), 1015–1024 (2005).
    [CrossRef]
  7. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
    [CrossRef]
  8. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [CrossRef]
  9. J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
    [CrossRef]
  10. C. K. Hitzenberger, E. Götzinger, M. Sticker, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [CrossRef]
  11. K. Wiesauer, M. Pircher, E. Goetzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, “Transversal ultrahigh-resolution polarization sensitive optical coherence tomography for strain mapping in materials,” Opt. Express 14(13), 5945–5953 (2006).
    [CrossRef]
  12. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
    [CrossRef]
  13. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
    [CrossRef]
  14. D. Adler, T. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004).
    [CrossRef]
  15. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27(19), 1702–1704 (2002).
    [CrossRef]
  16. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
    [CrossRef]
  17. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [CrossRef]
  18. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
    [CrossRef]
  19. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41(31), 6637–6645 (2002).
    [CrossRef]
  20. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28(10), 816–818 (2003).
    [CrossRef]
  21. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
    [CrossRef]
  22. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14(19), 8675–8684 (2006).
    [CrossRef]
  23. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
    [CrossRef]
  24. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and A. C. Boccara, “In-vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
    [CrossRef]
  25. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49(9), 1480–1488 (2010).
    [CrossRef]
  26. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2882 (2004).
    [CrossRef]
  27. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006).
    [CrossRef]
  28. A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2μm wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
    [CrossRef]
  29. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008).
    [CrossRef]
  30. J. Moreau, V. Loriette, and A. C. Boccara, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography I. Theory,” Appl. Opt. 42(19), 3800–3810 (2003).
    [CrossRef]
  31. J. Moreau, V. Loriette, and A. C. Boccara, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography II. Instrument and results,” Appl. Opt. 42(19), 3811–3818 (2003).
    [CrossRef]
  32. G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32(14), 2058–2060 (2007).
    [CrossRef]
  33. A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
    [CrossRef]
  34. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009).
    [CrossRef]
  35. M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004).
    [CrossRef]
  36. I. Abdulhalim, R. Friedman, L. Liraz, and R. Dadon, “Full-field frequency domain common path optical coherence tomography with annular aperture,” Proc. of SPIE-OSA Biomedical Optics, SPIE 6627, 662719 (2007).
  37. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
    [CrossRef]
  38. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef]
  39. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef]
  40. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In-vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [CrossRef]
  41. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), 182–184 (2003).
    [CrossRef]

2010 (1)

2009 (1)

2008 (2)

2007 (2)

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32(14), 2058–2060 (2007).
[CrossRef]

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
[CrossRef]

2006 (4)

2005 (3)

2004 (4)

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2882 (2004).
[CrossRef]

D. Adler, T. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004).
[CrossRef]

M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004).
[CrossRef]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[CrossRef]

2003 (7)

2002 (5)

2001 (1)

2000 (2)

1999 (1)

1997 (2)

1996 (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[CrossRef]

1995 (1)

1993 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef]

Adler, D.

Ahrens, G.

Akiba, M.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In-vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef]

Barton, J. K.

Bauer, S.

Beaurepaire, E.

Benattar, L.

Boccara, A. C.

S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009).
[CrossRef]

A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef]

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32(14), 2058–2060 (2007).
[CrossRef]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2μm wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[CrossRef]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and A. C. Boccara, “In-vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[CrossRef]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2882 (2004).
[CrossRef]

J. Moreau, V. Loriette, and A. C. Boccara, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography I. Theory,” Appl. Opt. 42(19), 3800–3810 (2003).
[CrossRef]

J. Moreau, V. Loriette, and A. C. Boccara, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography II. Instrument and results,” Appl. Opt. 42(19), 3811–3818 (2003).
[CrossRef]

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
[CrossRef]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
[CrossRef]

Boppart, S. A.

Bouma, B.

Bouma, B. E.

Bourquin, S.

M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004).
[CrossRef]

Brzezinski, M.

Cense, B.

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef]

Chen, Z.

Choma, M. A.

Dabu, R.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
[CrossRef]

David, G.

de Boer, J.

de Boer, J. F.

De Martino, A.

Ding, Z.

Drévillon, B.

Drexler, W.

Dubois, A.

D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49(9), 1480–1488 (2010).
[CrossRef]

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008).
[CrossRef]

A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef]

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32(14), 2058–2060 (2007).
[CrossRef]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2μm wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[CrossRef]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and A. C. Boccara, “In-vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[CrossRef]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2882 (2004).
[CrossRef]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
[CrossRef]

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
[CrossRef]

Engelke, R.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef]

Froehly, L.

M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004).
[CrossRef]

Fujimoto, J. G.

Georges, P.

Gigan, S.

Goetzinger, E.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef]

Grieve, K.

Gruetzner, G.

Grützner, G.

Hee, M. R.

Herz, P.

Hitzenberger, C.

Hitzenberger, C. K.

Huang, D.

Iftimia, N.

Ippen, E. P.

Izatt, J. A.

Karamata, B.

M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004).
[CrossRef]

Kärtner, F. X.

Ko, T.

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In-vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[CrossRef]

Kulkarni, M. D.

Labiau, S.

Lasser, T.

M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004).
[CrossRef]

Laubscher, M.

M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004).
[CrossRef]

Laude, B.

Le Gargasson, J. F.

Lecaque, R.

Leitgeb, R.

Li, X. D.

Lin, C. P.

Loriette, V.

Miao, J.

Milner, T. E.

Moneron, G.

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32(14), 2058–2060 (2007).
[CrossRef]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2μm wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[CrossRef]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2882 (2004).
[CrossRef]

Moreau, J.

Morgner, U.

Mujat, M.

Nagata, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
[CrossRef]

Neagu, L.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
[CrossRef]

Nelson, J. S.

Niizuma, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
[CrossRef]

Oh, W. Y.

Paques, M.

Park, B.

Pierce, M. C.

Pircher, M.

Pitris, C.

Puliafito, C. A.

Ren, H.

Sacchet, D.

Sahel, J.

Sarunic, M. V.

Sato, M.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
[CrossRef]

Schuman, J. S.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef]

Schwartz, L.

Simonutti, M.

Sticker, M.

Stifter, D.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef]

Swanson, E. A.

Tanno, N.

Tearney, G.

Tearney, G. J.

Vabre, L.

Van Gemert, M. J. C.

Wang, X. J.

Wang, Y.

Watanabe, Y.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
[CrossRef]

Welch, A. J.

Wiesauer, K.

Windeler, R. S.

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In-vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[CrossRef]

Yang, C. H.

Yazdanfar, S.

Yelin, R.

Yun, S. H.

Zhao, Y.

Appl. Opt. (6)

J. Biomed. Opt. (2)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In-vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef]

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[CrossRef]

Opt. Commun. (3)

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007).
[CrossRef]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2μm wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[CrossRef]

M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004).
[CrossRef]

Opt. Express (12)

D. Adler, T. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004).
[CrossRef]

K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13(3), 1015–1024 (2005).
[CrossRef]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and A. C. Boccara, “In-vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006).
[CrossRef]

K. Wiesauer, M. Pircher, E. Goetzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, “Transversal ultrahigh-resolution polarization sensitive optical coherence tomography for strain mapping in materials,” Opt. Express 14(13), 5945–5953 (2006).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14(19), 8675–8684 (2006).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef]

C. K. Hitzenberger, E. Götzinger, M. Sticker, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef]

A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef]

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008).
[CrossRef]

Opt. Lett. (14)

S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009).
[CrossRef]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
[CrossRef]

H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27(19), 1702–1704 (2002).
[CrossRef]

M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28(10), 816–818 (2003).
[CrossRef]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), 182–184 (2003).
[CrossRef]

G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32(14), 2058–2060 (2007).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[CrossRef]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef]

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[CrossRef]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In-vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[CrossRef]

Phys. Med. Biol. (1)

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef]

Other (1)

I. Abdulhalim, R. Friedman, L. Liraz, and R. Dadon, “Full-field frequency domain common path optical coherence tomography with annular aperture,” Proc. of SPIE-OSA Biomedical Optics, SPIE 6627, 662719 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics