Abstract

We present detailed investigations of chromatic polarization effects, caused by fiber spools used in FDML lasers and buffering spools for rapidly wavelength swept lasers. We introduce a novel wavelength swept FDML laser source, specially tailored for polarization sensitive optical coherence tomography (OCT) which switches between two different linear polarization states separated by 45°, i.e. 90° on the Poincaré sphere. The polarization maintaining laser cavity itself generates a stable linear polarization state and uses an external buffering technique in order to provide alternating polarization states for successive wavelength sweeps. The design of the setup is based on a comprehensive analysis of the polarization output from FDML lasers, using a novel 150 MHz polarization analyzer. We investigate the fiber polarization properties related to swept source OCT for different fiber delay topologies and analyze the polarization state of different FDML laser sources.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Rashleigh and R. Ulrich, “Polarization mode dispersion in single-mode fibers,” Opt. Lett.3(2), 60–62 (1978).
    [CrossRef] [PubMed]
  2. P. K. A. Wai and C. R. Menyak, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996).
    [CrossRef]
  3. G. J. Foschini and C. D. Poole, “Statistical-theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol.9(11), 1439–1456 (1991).
    [CrossRef]
  4. J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
    [CrossRef] [PubMed]
  5. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.5(6), 273–275 (1980).
    [CrossRef] [PubMed]
  6. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt.18(13), 2241–2251 (1979).
    [CrossRef] [PubMed]
  7. J. I. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron.17(6), 1041–1051 (1981).
    [CrossRef]
  8. A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
    [CrossRef]
  9. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986).
    [CrossRef]
  10. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett.22(22), 1704–1706 (1997).
    [CrossRef] [PubMed]
  11. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  12. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  13. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006).
    [CrossRef] [PubMed]
  14. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
    [CrossRef] [PubMed]
  15. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  16. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  17. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  18. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  19. W. Eickhoff, Y. Yen, and R. Ulrich, “Wavelength dependence of birefringence in single-mode fiber,” Appl. Opt.20(19), 3428–3435 (1981).
    [CrossRef] [PubMed]
  20. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  21. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007).
    [CrossRef] [PubMed]
  22. G. Palte, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, and R. Huber, “Fourier Domain Mode Locked (FDML) Lasers for Polarization Sensitive OCT,” in Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), 7372_7370M.
  23. C. Jirauschek, C. Eigenwillig, B. Biedermann, and R. Huber, “Fourier domain mode locking theory,” in IEEE Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vols 1-9 (2008), pp. 1403–1404.
  24. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express17(26), 24013–24019 (2009).
    [CrossRef] [PubMed]
  25. S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express19(9), 8802–8807 (2011).
    [CrossRef] [PubMed]
  26. S. Todor, C. Jirauschek, B. Biedermann, and R. Huber, Linewidth Optimization of Fourier Domain Mode-Locked Lasers, 2010 Conference on Lasers and Electro-Optics (2010).
  27. J. Zhang, J. Jing, P. Wang, and Z. Chen, “Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography,” Opt. Lett.36(24), 4788–4790 (2011).
    [CrossRef] [PubMed]
  28. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  29. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and randing,” J. Opt. Soc. Am. B9(6), 903–908 (1992).
    [CrossRef]
  30. C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
    [CrossRef] [PubMed]
  31. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997).
    [CrossRef] [PubMed]
  32. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001).
    [CrossRef] [PubMed]
  33. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  34. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  35. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000).
    [CrossRef] [PubMed]
  36. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008).
    [CrossRef] [PubMed]
  37. J. Zhang, W. G. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express12(24), 6033–6039 (2004).
    [CrossRef] [PubMed]
  38. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
    [CrossRef] [PubMed]
  39. S. L. Jiao, W. R. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt.42(25), 5191–5197 (2003).
    [CrossRef] [PubMed]
  40. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
    [CrossRef] [PubMed]
  41. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17(5), 3980–3996 (2009).
    [CrossRef] [PubMed]
  42. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  43. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009).
    [CrossRef] [PubMed]
  44. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007).
    [CrossRef]
  45. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008).
    [CrossRef] [PubMed]
  46. D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett.33(13), 1395–1397 (2008).
    [CrossRef] [PubMed]
  47. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express16(21), 16552–16560 (2008).
    [PubMed]
  48. T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett.33(23), 2815–2817 (2008).
    [CrossRef] [PubMed]
  49. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
    [CrossRef] [PubMed]
  50. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst.31(1), 783–790 (2007).
    [CrossRef]
  51. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
    [CrossRef] [PubMed]
  52. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express16(4), 2547–2554 (2008).
    [CrossRef] [PubMed]
  53. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. J. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express16(18), 14095–14105 (2008).
    [CrossRef] [PubMed]
  54. Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun.282(1), 88–92 (2009).
    [CrossRef]
  55. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007).
    [CrossRef]
  56. W. H. McMaster, “Polarization and the Stokes Parameters,” Am. J. Phys.22(6), 351 (1954).
    [CrossRef]
  57. F. Mitschke, Glasfasern, 1st ed. (Spektrum, 2005).
  58. S. C. Rashleigh, W. K. Burns, R. P. Moeller, and R. Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett.7(1), 40–42 (1982).
    [CrossRef] [PubMed]
  59. B. Hyle Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29(21), 2512–2514 (2004).
    [CrossRef] [PubMed]

2011

2010

2009

2008

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express16(4), 2547–2554 (2008).
[CrossRef] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008).
[CrossRef] [PubMed]

D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett.33(13), 1395–1397 (2008).
[CrossRef] [PubMed]

G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. J. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express16(18), 14095–14105 (2008).
[CrossRef] [PubMed]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express16(21), 16552–16560 (2008).
[PubMed]

T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett.33(23), 2815–2817 (2008).
[CrossRef] [PubMed]

2007

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007).
[CrossRef]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst.31(1), 783–790 (2007).
[CrossRef]

2006

2005

2004

2003

2001

2000

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000).
[CrossRef] [PubMed]

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

1997

1996

P. K. A. Wai and C. R. Menyak, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996).
[CrossRef]

1992

1991

G. J. Foschini and C. D. Poole, “Statistical-theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol.9(11), 1439–1456 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1986

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986).
[CrossRef]

1983

A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
[CrossRef]

1982

1981

W. Eickhoff, Y. Yen, and R. Ulrich, “Wavelength dependence of birefringence in single-mode fiber,” Appl. Opt.20(19), 3428–3435 (1981).
[CrossRef] [PubMed]

J. I. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron.17(6), 1041–1051 (1981).
[CrossRef]

1980

1979

1978

1954

W. H. McMaster, “Polarization and the Stokes Parameters,” Am. J. Phys.22(6), 351 (1954).
[CrossRef]

Adler, D. C.

An, X.

Barlow, A. J.

A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
[CrossRef]

Barrett, D.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007).
[CrossRef]

Barry, S.

Barton, J. K.

Baumann, B.

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

Biedermann, B.

Biedermann, B. R.

Bouma, B. E.

Burns, W. K.

Cable, A. E.

Caswell, A. W.

Cense, B.

Chang, S. D.

Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun.282(1), 88–92 (2009).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, D.

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007).
[CrossRef]

Chen, Y. L.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Chen, Z.

Chen, Z. P.

Chinn, S. R.

Collett, E.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007).
[CrossRef]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007).
[CrossRef]

Dave, D.

de Boer, J. F.

Desjardins, A. E.

Dichtl, S.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

Drexler, W.

Duker, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Eickhoff, W.

Eigenwillig, C. M.

Fercher, A. F.

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001).
[CrossRef] [PubMed]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Flueraru, C.

Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun.282(1), 88–92 (2009).
[CrossRef]

Foschini, G. J.

G. J. Foschini and C. D. Poole, “Statistical-theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol.9(11), 1439–1456 (1991).
[CrossRef]

Fraher, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007).
[CrossRef]

Fujimoto, J. G.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst.31(1), 783–790 (2007).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007).
[CrossRef]

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000).
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett.22(22), 1704–1706 (1997).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and randing,” J. Opt. Soc. Am. B9(6), 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Goetzinger, E.

Golubovic, B.

Gorczynska, I.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, X. J.

He, S.

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and randing,” J. Opt. Soc. Am. B9(6), 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Herold, R. E.

Hitzenberger, C. K.

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001).
[CrossRef] [PubMed]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

Hsu, K.

Huang, D.

Huang, S. W.

Huber, R.

S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express19(9), 8802–8807 (2011).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express17(26), 24013–24019 (2009).
[CrossRef] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009).
[CrossRef] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett.33(23), 2815–2817 (2008).
[CrossRef] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst.31(1), 783–790 (2007).
[CrossRef]

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
[CrossRef] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

Hyle Park, B.

Iftimia, N.

Ippen, E. P.

Izatt, J. A.

Jeon, M. Y.

Jeong, M. Y.

Jiao, S. L.

Jing, J.

Jirauschek, C.

Jung, E. J.

Jung, W.

Jung, W. G.

Kärtner, F. X.

Kawana, K.

Kim, C. S.

Kim, M. K.

Kimura, T.

J. I. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron.17(6), 1041–1051 (1981).
[CrossRef]

Klein, T.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Kranendonk, L. A.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst.31(1), 783–790 (2007).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

Kulkarni, M. D.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G. Y.

Makita, S.

Mao, Y. X.

Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun.282(1), 88–92 (2009).
[CrossRef]

Mariampillai, A.

McMaster, W. H.

W. H. McMaster, “Polarization and the Stokes Parameters,” Am. J. Phys.22(6), 351 (1954).
[CrossRef]

Menyak, C. R.

P. K. A. Wai and C. R. Menyak, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996).
[CrossRef]

Milner, T. E.

Miura, M.

Moeller, R. P.

Morgner, U.

Moritz, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

Munce, N. R.

Nelson, J. S.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986).
[CrossRef]

Oh, W. Y.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986).
[CrossRef]

Okura, Y.

Oshika, T.

Palte, G.

Park, B. H.

Payne, D. N.

A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
[CrossRef]

Pierce, M. C.

Pircher, M.

Pitris, C.

Poole, C. D.

G. J. Foschini and C. D. Poole, “Statistical-theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol.9(11), 1439–1456 (1991).
[CrossRef]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rashleigh, S. C.

Robl, B.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

Sakai, J. I.

J. I. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron.17(6), 1041–1051 (1981).
[CrossRef]

Sanders, S. T.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst.31(1), 783–790 (2007).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986).
[CrossRef]

Sattmann, H.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

Saxer, C. E.

Schaefer, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007).
[CrossRef]

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007).
[CrossRef]

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sherif, S.

Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun.282(1), 88–92 (2009).
[CrossRef]

Shishkov, M.

Shu, C.

Simon, A.

Smyth, R.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007).
[CrossRef]

Sperr, W.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

Srinivasan, V. J.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007).
[CrossRef] [PubMed]

Standish, B. A.

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stoica, G.

Swanson, E. A.

Taira, K.

Tearney, G. J.

Todor, S.

Ulrich, R.

Urata, Y.

Vakoc, B. J.

van Gemert, M. J. C.

Vitkin, I. A.

Wai, P. K. A.

P. K. A. Wai and C. R. Menyak, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996).
[CrossRef]

Wang, L. V.

Wang, P.

Wang, Q.

Welch, A. J.

Wieser, W.

Wojtkowski, M.

Yamanari, M.

Yasuno, Y.

Yazdanfar, S.

Yen, Y.

Yu, W. R.

Yun, S. H.

Zhang, J.

Zhao, Y. H.

Am. J. Phys.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007).
[CrossRef]

W. H. McMaster, “Polarization and the Stokes Parameters,” Am. J. Phys.22(6), 351 (1954).
[CrossRef]

Appl. Opt.

Caries Res.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. I. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron.17(6), 1041–1051 (1981).
[CrossRef]

A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986).
[CrossRef]

P. K. A. Wai and C. R. Menyak, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996).
[CrossRef]

G. J. Foschini and C. D. Poole, “Statistical-theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol.9(11), 1439–1456 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007).
[CrossRef]

Opt. Commun.

Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun.282(1), 88–92 (2009).
[CrossRef]

Opt. Express

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

J. Zhang, W. G. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express12(24), 6033–6039 (2004).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express16(4), 2547–2554 (2008).
[CrossRef] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17(5), 3980–3996 (2009).
[CrossRef] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009).
[CrossRef] [PubMed]

C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express17(26), 24013–24019 (2009).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express19(9), 8802–8807 (2011).
[CrossRef] [PubMed]

G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. J. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express16(18), 14095–14105 (2008).
[CrossRef] [PubMed]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express16(21), 16552–16560 (2008).
[PubMed]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001).
[CrossRef] [PubMed]

Opt. Lett.

T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett.33(23), 2815–2817 (2008).
[CrossRef] [PubMed]

J. Zhang, J. Jing, P. Wang, and Z. Chen, “Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography,” Opt. Lett.36(24), 4788–4790 (2011).
[CrossRef] [PubMed]

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett.33(13), 1395–1397 (2008).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007).
[CrossRef] [PubMed]

B. Hyle Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29(21), 2512–2514 (2004).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000).
[CrossRef] [PubMed]

Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett.22(22), 1704–1706 (1997).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

S. C. Rashleigh and R. Ulrich, “Polarization mode dispersion in single-mode fibers,” Opt. Lett.3(2), 60–62 (1978).
[CrossRef] [PubMed]

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.5(6), 273–275 (1980).
[CrossRef] [PubMed]

S. C. Rashleigh, W. K. Burns, R. P. Moeller, and R. Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett.7(1), 40–42 (1982).
[CrossRef] [PubMed]

Proc. Combust. Inst.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst.31(1), 783–790 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

G. Palte, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, and R. Huber, “Fourier Domain Mode Locked (FDML) Lasers for Polarization Sensitive OCT,” in Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), 7372_7370M.

C. Jirauschek, C. Eigenwillig, B. Biedermann, and R. Huber, “Fourier domain mode locking theory,” in IEEE Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vols 1-9 (2008), pp. 1403–1404.

S. Todor, C. Jirauschek, B. Biedermann, and R. Huber, Linewidth Optimization of Fourier Domain Mode-Locked Lasers, 2010 Conference on Lasers and Electro-Optics (2010).

F. Mitschke, Glasfasern, 1st ed. (Spektrum, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Left: Schematic of the 150 MHz home-built polarization analyzer. Right: Representation of a polarization state on the Poincaré sphere.

Fig. 2
Fig. 2

Left: Cylindrical projection of the polarization state (θ, φ) into 2D. The graph shows 4 independent measurements, 3 of linearly polarized light (0°, 45° and 90°) as well as circularly polarized light. The light source was an FDML laser followed by bulk optical components to prepare the desired polarization states. Right: 36 SOP measurements of ASE prepared with a linear polarizer followed by a λ/4 plate generating various elliptic states. The linear polarizer was turned in 10° steps. The red dots indicate the measured polarization states on the Poincaré sphere.

Fig. 3
Fig. 3

Left: FDML laser in sigma ring configuration as used for measurements at 1550 nm. ISO: isolator, FFP-TF: fiber Fabry-Pérot tunable filter, PC: polarization controller, CIR: circulator, FRM: Faraday rotation mirror. The 1.89 km spool is made of dispersion shifted fiber with a zero dispersion wavelength around 1550 nm. Right: Output of laser L1 (polarization dependent SOA) at different polarization controller positions where good lasing occurs. First three plots with mirror instead of FRM, last plot with FRM in sigma ring. In each case, the output shows good linear polarization with the residual deviation being caused by birefringence in the fiber path between the SOA and the polarization analyzer.

Fig. 4
Fig. 4

SOP traces taken from output of laser L2 (polarization independent SOA) shows large polarization fluctuations inside the laser cavity: The polarization changes significantly throughout the sweep (130 nm around 1511 nm) and shows large sweep-to-sweep variation. Left: Single sweep recorded with the analyzer. Right: An average of 256 sweeps.

Fig. 5
Fig. 5

SOP after different delay spool implementations (D1...D3) for sweeps of 130 nm around 1310 nm. The traces show wavelength evolutions of the SOP measured across forward (colored dots) and backward sweep (black dots). Several wavelengths were annotated for the 90° curve of D1. The incident light was prepared with linear polarization oriented along 0°, 45° and 90° relative to the spool plane; the choices 0° and 90° are shown on the right bottom. The second spool (standing) is only used for delay spool implementation D4. D1: direct 2 km delay spool, D2: a sigma ring delay with a 1 km spool traversed two times and a Faraday rotation mirror, D3: like D2 but with a normal mirror instead of the Faraday mirror.

Fig. 6
Fig. 6

SOP after different delay spool implementations (D1…D4) for sweeps of 140 nm around 1550 nm. These measurements can be directly compared to the 1310 nm measurements in Fig. 5.

Fig. 7
Fig. 7

Left: SOP traces for sweeps of 140 nm around 1550 nm when adjusting polarization paddle controllers after a 460 m fiber delay line. Paddles alter the location on the Poincaé sphere but have little influence on the extent of the traces. Right: Projection onto the gain axis for an SOA that amplifies only linear polarization with φ = 0°. For any incoming polarizations, the isolines in the graph represent the fraction of the incoming light which will be amplified in the SOA.

Fig. 8
Fig. 8

Schematic of the PM FDML laser including the buffer stage. SOP measurement after the SM 50/50 coupler when sweeping over 130 nm centered around 1310 nm shows two linear polarizations under 45° angle (i.e. 90° on the Poincaré sphere): θ = 90° ± 6°, φ = 1° ± 4° (primary sweep) and θ = 180° ± 6°, φ = 3° ± 7° (buffered sweep).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( S 0 S 1 S 2 S 3 )=( I 0° + I 90° I 0° I 90° 2 I 45° I 0° I 90° I 0° + I 90° 2 I σ )
θ=arctan( S 2 / S 1 ) ϕ=arcsin( S 3 / S 0 r ). r= 1 S 0 S 1 2 + S 2 2 + S 3 2
( S 0 S 1 S 2 S 3 )=M( I 0° I 45° I 90° I σ ) with M=( 1 0 1 0 1 0 1 0 1 2 1 0 1 0 1 2 )

Metrics