Abstract

Precision position-sensing is required for many microscopy techniques. One promising method, back-scattered detection (BSD), is incredibly sensitive, allowing for position measurements at the level of tens of picometers in three dimensions. In BSD the position of a micron-sized bead is measured by back-scattering a focused laser beam off the bead and imaging the resulting interference pattern onto a detector. Since the detection system geometry is confined to one side of the objective, the technique is compatible with platforms that have restricted optical access (e.g. magnetic tweezers, atomic force microscopy, and microfluidics). However, general adoption of BSD may be limited according to a recent theory [Volpe et al., J. Appl. Phys. 102, 084701, 2007] that predicts diminished signals under certain conditions. We directly measured the BSD response while varying the experimental conditions, including bead radius, numerical aperture, and relative index. Contrary to the proposed theory, we find that all experimental conditions tested produced a viable signal for atomic-scale measurements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Jordan and P. C. Anthony, “Design considerations for micro- and nanopositioning: leveraging the latest for biophysical applications,” Curr. Pharm. Biotechnol.10(5), 515–521 (2009).
    [CrossRef] [PubMed]
  2. S. O. R. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum.79(7), 071101 (2008).
    [CrossRef] [PubMed]
  3. R. Puers, “Capacitive sensors - when and how to use them,” Sens. Actuat. A37–8, 93–105 (1993).
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  5. J. J. Dosch, D. J. Inman, and E. Garcia, “A self-sensing piezoelectric actuator for collocated control,” J. Intell. Mater. Syst. Struct.3(1), 166–185 (1992).
    [CrossRef]
  6. A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express15(20), 13434–13445 (2007).
    [CrossRef] [PubMed]
  7. M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattered light,” Appl. Opt.35(36), 7112–7116 (1996).
    [CrossRef] [PubMed]
  8. U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum.77(10), 105105 (2006).
    [CrossRef]
  9. J. H. G. Huisstede, K. O. van der Werf, M. L. Bennink, and V. Subramaniam, “Force detection in optical tweezers using backscattered light,” Opt. Express13(4), 1113–1123 (2005).
    [CrossRef] [PubMed]
  10. G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions,” Nano Lett.9(4), 1451–1456 (2009).
    [CrossRef] [PubMed]
  11. G. Volpe, G. Kozyreff, and D. Petrov, “Backscattering position detection for photonic force microscopy,” J. Appl. Phys.102(8), 084701 (2007).
    [CrossRef]
  12. W. Denk and W. W. Webb, “Optical measurement of picometer displacements of transparent microscopic objects,” Appl. Opt.29(16), 2382–2391 (1990).
    [CrossRef] [PubMed]
  13. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
    [CrossRef]
  14. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23(1), 7–9 (1998).
    [CrossRef] [PubMed]
  15. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999).
    [CrossRef] [PubMed]
  16. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt.46(3), 421–427 (2007).
    [CrossRef] [PubMed]
  17. A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J.96(7), 2926–2934 (2009).
    [CrossRef] [PubMed]

2009

S. C. Jordan and P. C. Anthony, “Design considerations for micro- and nanopositioning: leveraging the latest for biophysical applications,” Curr. Pharm. Biotechnol.10(5), 515–521 (2009).
[CrossRef] [PubMed]

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions,” Nano Lett.9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J.96(7), 2926–2934 (2009).
[CrossRef] [PubMed]

2008

S. O. R. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum.79(7), 071101 (2008).
[CrossRef] [PubMed]

2007

2006

U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum.77(10), 105105 (2006).
[CrossRef]

2005

1999

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999).
[CrossRef] [PubMed]

1998

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

1996

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattered light,” Appl. Opt.35(36), 7112–7116 (1996).
[CrossRef] [PubMed]

1993

R. Puers, “Capacitive sensors - when and how to use them,” Sens. Actuat. A37–8, 93–105 (1993).

1992

J. J. Dosch, D. J. Inman, and E. Garcia, “A self-sensing piezoelectric actuator for collocated control,” J. Intell. Mater. Syst. Struct.3(1), 166–185 (1992).
[CrossRef]

1990

Alchenberger, D.

Anthony, P. C.

S. C. Jordan and P. C. Anthony, “Design considerations for micro- and nanopositioning: leveraging the latest for biophysical applications,” Curr. Pharm. Biotechnol.10(5), 515–521 (2009).
[CrossRef] [PubMed]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Bennink, M. L.

Block, S. M.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Carter, A. R.

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J.96(7), 2926–2934 (2009).
[CrossRef] [PubMed]

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions,” Nano Lett.9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt.46(3), 421–427 (2007).
[CrossRef] [PubMed]

A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express15(20), 13434–13445 (2007).
[CrossRef] [PubMed]

Churnside, A. B.

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions,” Nano Lett.9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Dearden, E. W.

Dekker, C.

U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum.77(10), 105105 (2006).
[CrossRef]

Dekker, N. H.

U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum.77(10), 105105 (2006).
[CrossRef]

Denk, W.

Dosch, J. J.

J. J. Dosch, D. J. Inman, and E. Garcia, “A self-sensing piezoelectric actuator for collocated control,” J. Intell. Mater. Syst. Struct.3(1), 166–185 (1992).
[CrossRef]

Eberle, L. S.

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions,” Nano Lett.9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

Florin, E. L.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999).
[CrossRef] [PubMed]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Friese, M. E. J.

Garcia, E.

J. J. Dosch, D. J. Inman, and E. Garcia, “A self-sensing piezoelectric actuator for collocated control,” J. Intell. Mater. Syst. Struct.3(1), 166–185 (1992).
[CrossRef]

Gittes, F.

Gross, S. P.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Halsey, W.

Heckenberg, N. R.

Hörber, J. K. H.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999).
[CrossRef] [PubMed]

Huisstede, J. H. G.

Inman, D. J.

J. J. Dosch, D. J. Inman, and E. Garcia, “A self-sensing piezoelectric actuator for collocated control,” J. Intell. Mater. Syst. Struct.3(1), 166–185 (1992).
[CrossRef]

Jordan, S. C.

S. C. Jordan and P. C. Anthony, “Design considerations for micro- and nanopositioning: leveraging the latest for biophysical applications,” Curr. Pharm. Biotechnol.10(5), 515–521 (2009).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Keyser, U. F.

U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum.77(10), 105105 (2006).
[CrossRef]

King, G. M.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Kozyreff, G.

G. Volpe, G. Kozyreff, and D. Petrov, “Backscattering position detection for photonic force microscopy,” J. Appl. Phys.102(8), 084701 (2007).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Moheimani, S. O. R.

S. O. R. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum.79(7), 071101 (2008).
[CrossRef] [PubMed]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Perkins, T. T.

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions,” Nano Lett.9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J.96(7), 2926–2934 (2009).
[CrossRef] [PubMed]

A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express15(20), 13434–13445 (2007).
[CrossRef] [PubMed]

A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt.46(3), 421–427 (2007).
[CrossRef] [PubMed]

Petrov, D.

G. Volpe, G. Kozyreff, and D. Petrov, “Backscattering position detection for photonic force microscopy,” J. Appl. Phys.102(8), 084701 (2007).
[CrossRef]

Pralle, A.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999).
[CrossRef] [PubMed]

Prummer, M.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999).
[CrossRef] [PubMed]

Puers, R.

R. Puers, “Capacitive sensors - when and how to use them,” Sens. Actuat. A37–8, 93–105 (1993).

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Rubinsztein-Dunlop, H.

Schmidt, C. F.

Seol, Y.

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J.96(7), 2926–2934 (2009).
[CrossRef] [PubMed]

Stelzer, E. H. K.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999).
[CrossRef] [PubMed]

Subramaniam, V.

Ulrich, T. A.

van der Does, J.

U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum.77(10), 105105 (2006).
[CrossRef]

van der Werf, K. O.

Visscher, K.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Volpe, G.

G. Volpe, G. Kozyreff, and D. Petrov, “Backscattering position detection for photonic force microscopy,” J. Appl. Phys.102(8), 084701 (2007).
[CrossRef]

Webb, W. W.

Appl. Opt.

Biophys. J.

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J.96(7), 2926–2934 (2009).
[CrossRef] [PubMed]

Curr. Pharm. Biotechnol.

S. C. Jordan and P. C. Anthony, “Design considerations for micro- and nanopositioning: leveraging the latest for biophysical applications,” Curr. Pharm. Biotechnol.10(5), 515–521 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

J. Appl. Phys.

G. Volpe, G. Kozyreff, and D. Petrov, “Backscattering position detection for photonic force microscopy,” J. Appl. Phys.102(8), 084701 (2007).
[CrossRef]

J. Intell. Mater. Syst. Struct.

J. J. Dosch, D. J. Inman, and E. Garcia, “A self-sensing piezoelectric actuator for collocated control,” J. Intell. Mater. Syst. Struct.3(1), 166–185 (1992).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Microsc. Res. Tech.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999).
[CrossRef] [PubMed]

Nano Lett.

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions,” Nano Lett.9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum.77(10), 105105 (2006).
[CrossRef]

S. O. R. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum.79(7), 071101 (2008).
[CrossRef] [PubMed]

Sens. Actuat. A

R. Puers, “Capacitive sensors - when and how to use them,” Sens. Actuat. A37–8, 93–105 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical schematic for back-scattered detection (BSD). In BSD a laser is coupled into a microscope and the focused beam back-scatters off a bead in the sample plane (Inset). The diode laser (DL, λ = 945 nm, red dashed line) is launched from a fiber to obtain a Gaussian mode. The combination of the polarizing beam splitter (PBS) and quarter-wave plate (λ/4) act as an optical isolator for highly efficient BSD. The quadrant photodiode (QPD) measures the scattered light. As the bead is moved through the laser in x by the stage, the scatter changes and the quadrant photodiode records the BSD signal. Here we display the signal in x that has been normalized by the total intensity on the QPD. Data is from a 300-nm-radius bead in water.

Fig. 2
Fig. 2

Isolation of the central back-scattered region leads to increased lateral BSD sensitivity. (a) Inset. An iris in front of the detector isolates the central region. As the iris is closed, the slope of the lateral BSD response increases for 480-nm-radius beads in air. Colors go from red to purple as the iris is closed. Curves also denoted by symbols as shown. (b) Response of the BSD axial signal as the iris is closed. Color and symbols same as in (a). Traces offset for clarity.

Fig. 3
Fig. 3

Selection of the optimal axial position maximizes lateral BSD sensitivity. (a) Inset. The axial BSD response is the sum of the voltage from the reflected light off of the glass-medium interface, which has a singular minimum, and the back-scattered light off of the bead, which is the derivative of a Gaussian. Left, center, and right axial signals correspond to bead radii of 55 nm, 200 nm, and 480 nm, respectively. Lateral BSD sensitivity (Sens. x) as a function of position in z (200 nm increments) is displayed as an intensity plot below each graph. There are three regions A (green), B (light purple), and C (magenta) where the axial BSD signal is linear. The z position that produces the maximum lateral sensitivity for a region is denoted by a point. The lateral, (b), and axial, (c), BSD sensitivities at points A, B, and C for beads of varying radii in air. Color scheme same as in (a).

Fig. 4
Fig. 4

Lateral BSD sensitivity varies with bead radius, numerical aperture, and relative index. Left. As bead radius increases the BSD sensitivity in water (blue) increases and then levels off. Linear fit for bead radii ≤ 480 nm (black). Center. As relative index increases a spherical scattering particle in the Raleigh regime would produce an increased lateral sensitivity due to an increase in polarizability (black, function in main text). Data for 480-nm-radius beads with the iris fully open (gray) shows a drop in sensitivity, while the iris in the optimally closed position (yellow) follows the prediction. Right. As the numerical aperture decreases, the sensitivity for 480-nm-radius beads in water remains constant (purple).

Metrics