Abstract

The near infrared transmission of corrugated metal films deposited on hetero-colloidal crystals is investigated. The transmission response of the quasi-three-dimensional (quasi-3D) metal film is modified by controlling the nominal thickness of a dielectric layer pre-deposited on the top surface of the colloidal crystal to form a new hetero-colloidal crystal. An extraordinary optical transmission (EOT) phenomenon could be presented in such metallodielectric (MD) architectures. We have found that the main transmission peak is suppressed as the thickness of the intercalated dielectric layer is increased. We propose that the observed EOT is a result of constructive interference between a localized sphere-like plasmon mode and an index-guided eigen mode mainly confined in the colloidal crystal, which is confirmed by our numerical simulations. Based on the MD microstructures, a distinct plasmon sensitivity response difference is achieved, which indicates potential applications for biochemical sensing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  4. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
    [CrossRef] [PubMed]
  5. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express 19(27), 26186–26197 (2011).
    [CrossRef] [PubMed]
  6. S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
    [CrossRef] [PubMed]
  7. S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
    [CrossRef]
  8. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [CrossRef]
  9. Y. H. Ye, Z. B. Wang, D. S. Yan, and J. Y. Zhang, “Role of shape in middle-infrared transmission enhancement through periodically perforated metal films,” Opt. Lett. 32(21), 3140–3142 (2007).
    [CrossRef] [PubMed]
  10. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
    [CrossRef] [PubMed]
  11. Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
    [CrossRef]
  12. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
    [CrossRef] [PubMed]
  13. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
    [CrossRef]
  14. W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
    [CrossRef]
  15. Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
    [CrossRef] [PubMed]
  16. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
    [CrossRef] [PubMed]
  17. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [CrossRef] [PubMed]
  18. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
    [CrossRef]
  19. Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
    [CrossRef]
  20. S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
    [CrossRef]
  21. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
    [CrossRef]
  22. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [CrossRef] [PubMed]
  23. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
    [CrossRef] [PubMed]
  24. Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
    [CrossRef] [PubMed]
  25. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  26. P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
    [CrossRef]
  27. L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
    [CrossRef]
  28. L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
    [CrossRef] [PubMed]
  29. Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
    [CrossRef]
  30. Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
    [CrossRef] [PubMed]
  31. B. F. Bai, L. F. Li, and L. J. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30(18), 2360–2362 (2005).
    [CrossRef] [PubMed]
  32. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
    [CrossRef] [PubMed]
  33. J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
    [CrossRef]
  34. J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
    [CrossRef] [PubMed]
  35. C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
    [CrossRef]
  36. L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
    [CrossRef]
  37. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
    [CrossRef]
  38. T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
    [CrossRef]
  39. S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
    [CrossRef]
  40. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  41. Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
    [CrossRef] [PubMed]
  42. C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
    [CrossRef]
  43. Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
    [CrossRef]

2012

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

2011

2010

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[CrossRef] [PubMed]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[CrossRef]

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[CrossRef] [PubMed]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[CrossRef]

2009

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[CrossRef]

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[CrossRef] [PubMed]

2008

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[CrossRef]

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

2007

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
[CrossRef]

Y. H. Ye, Z. B. Wang, D. S. Yan, and J. Y. Zhang, “Role of shape in middle-infrared transmission enhancement through periodically perforated metal films,” Opt. Lett. 32(21), 3140–3142 (2007).
[CrossRef] [PubMed]

2006

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[CrossRef]

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

2005

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[CrossRef]

B. F. Bai, L. F. Li, and L. J. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30(18), 2360–2362 (2005).
[CrossRef] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

2004

T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
[CrossRef] [PubMed]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Arnold, N.

L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[CrossRef]

Astilean, S.

C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
[CrossRef]

Avrutsky, I.

Bai, B. F.

Bao, Y. J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Bardosova, M.

S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bäuerle, D.

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[CrossRef] [PubMed]

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[CrossRef]

L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[CrossRef]

Bower, J. E.

Brodoceanu, D.

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[CrossRef] [PubMed]

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[CrossRef]

L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[CrossRef]

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Cao, Y.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[CrossRef]

Cao, Z. S.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

Carretero-Palacios, S.

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

Carson, J. J. L.

Chan, C. T.

Chan, H. B.

Chen, J.

Chen, Z.

Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[CrossRef]

Cirelli, R. A.

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dong, H.

Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[CrossRef]

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

Ebbesen, T. W.

S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Fan, Y. C.

Farcau, C.

C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
[CrossRef]

Fu, J. X.

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[CrossRef]

García-Vidal, F. J.

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Genet, C.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Han, W. D.

Han, Z. L.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Hang, Z. H.

Hangyo, M.

T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hou, B.

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

Hou, Y.

Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[CrossRef] [PubMed]

Huang, C. P.

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Jiang, X. Y.

Kaminska, B.

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Klein Koerkamp, K. J.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Klemens, F.

Kochergin, V.

Kondo, T.

T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[CrossRef]

Korovin, A. V.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

Kravchenko, I.

Kuipers, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Landström, L.

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[CrossRef] [PubMed]

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[CrossRef]

L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[CrossRef]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, H. Q.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[CrossRef]

Li, J. Q.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Li, L. F.

Li, Y. Y.

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

Liu, S. Q.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Lu, W.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Lu, X.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Mahboub, O.

Mansfield, W. M.

Marcet, Z.

Martín-Moreno, L.

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[CrossRef] [PubMed]

Miner, J. F.

Ming, N. B.

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[CrossRef]

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

Miyazaki, H.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

Najiminaini, M.

Ohtaka, K.

T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

Pai, C. S.

Pan, J.

Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[CrossRef]

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

Pemble, M. E.

S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[CrossRef]

Peng, R. W.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Peschel, U.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

Piglmayer, K.

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[CrossRef]

L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[CrossRef]

Povey, I. M.

S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[CrossRef]

Qiu, M.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Regensburger, A.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

Rodrigo, S. G.

Romanov, S. G.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[CrossRef]

Ruan, Z. C.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Sato, T.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

Segawa, Y.

T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[CrossRef]

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Shao, J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Sheng, P.

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[CrossRef]

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

Shu, D. J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Sotomayor Torres, C. M.

S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[CrossRef]

Sun, G.

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[CrossRef]

Sun, J.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

Tang, C. J.

Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[CrossRef] [PubMed]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[CrossRef]

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[CrossRef]

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Vasefi, F.

Wang, H. T.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

Wang, L.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

Wang, M.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Wang, Q.

Wang, Q. J.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Wang, Z. B.

Wang, Z. L.

Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[CrossRef] [PubMed]

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[CrossRef]

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[CrossRef]

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

Wei, Z. Y.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[CrossRef]

Wen, W. J.

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, C.

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[CrossRef]

Wu, S.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Xu, J.

Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[CrossRef] [PubMed]

Yamaguti, S.

T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[CrossRef]

Yamamoto, K.

T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[CrossRef]

Yan, D. S.

Ye, Y. H.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yin, X. G.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Yu, D.

Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[CrossRef] [PubMed]

Yu, X.

Zeng, L. J.

Zhan, P.

Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[CrossRef] [PubMed]

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[CrossRef]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

Zhang, C.

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Zhang, J. Y.

Zhang, W. Y.

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[CrossRef]

Zhang, X.

Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[CrossRef] [PubMed]

Zhao, Y.

Zhou, L.

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

Zhu, D.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Zhu, M. W.

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

Zhu, S. N.

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

Zhu, Y. Y.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Zi, J.

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

Acc. Chem. Res.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[CrossRef]

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[CrossRef]

Appl. Phys. Lett.

S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[CrossRef]

Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[CrossRef]

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[CrossRef]

J. Appl. Phys.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
[CrossRef]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

Langmuir

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Laser Photon. Rev.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

Nanotechnology

Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[CrossRef] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[CrossRef] [PubMed]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express 19(27), 26186–26197 (2011).
[CrossRef] [PubMed]

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[CrossRef] [PubMed]

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Photon. Nanostructures

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[CrossRef]

Phys. Rev. B

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[CrossRef]

Phys. Rev. Lett.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Sens. Actuators B Chem.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Fabrication procedure and schematic geometry of the MD microstructures. (b), (c) SEM image (tilted view) of the MD microstructures without and with the intercalated a-SiO2 layer thickness h = 0 or h = 0.28 D, respectively. The white dash circle line indicates the surface of the PS sphere.

Fig. 2
Fig. 2

Measured (a) and calculated (b) transmission spectra for the pure dielectric hetero-colloidal crystals with different a-SiO2 layer thicknesses from h = 0 to 0.15D, 0.22D, 0.28D, 0.35D. G1 and G2 indicate the two main dips for the pure dielectric microstructures. For clarity, the individual spectra are offset by 10% from one another. (c) Measured (solid line) and calculated (dashed line) wavelength of G1 (solid squares) and G2 (hollow squares) modes for the pure dielectric hetero-colloidal crystals as functions of h. The lines connecting the data points are guides to the eye.

Fig. 3
Fig. 3

Measured (a) and calculated (b) transmission spectra for the MD microstructures with different SiO2 layer thicknesses from h = 0 to 0.15D, 0.22D, 0.28D, 0.35D. P1 and P2 denote the two obvious peaks of the microstructures. For clarity, the individual spectra are offset by 5% from one another. (c) Measured (solid line) and calculated (dashed line) wavelength of P1 (solid squares) and P2 (hollow squares) modes for the MD microstructures as functions of h. The lines connecting the data points are guides to the eye.

Fig. 4
Fig. 4

Calculated |E|2 distributions of the pure dielectric hetero-colloidal crystals with G1 (a-c) and G2 (d-f) modes and the MD microstructures at the resonance P1 (g-i) and P2 (j-l) modes for h from 0 to 0.22D and 0.35D, respectively. The right column shows the SEM images of the corresponding MD microstructures.

Fig. 5
Fig. 5

Measured transmission spectra for the MD microstructures immersed in different environment media: air (black line, n = 1.0), ethanol gas (green line, n = 1.22), ethanol liquid (red line, n = 1.36), and iso-Propyl alcohol liquid (blue line, n = 1.38) with h = 0 (a) and h = 0.28D (b). (c) Plot of the main peaks shifts versus refractive index of the P2 (red circles) andP1 (black squares) of h = 0.28D, and P1 (green triangles) of h = 0.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε Au =1 ω p 2 / [ω(ω+i ω c )] 1

Metrics