Abstract

We demonstrate a novel approach for the real time visualization and quantification of the 3D spatial frequencies in an image domain. Our approach is based on the spectral encoding of spatial frequency principle and permits the formation of an image as a color map in which spatially separated spectral wavelengths correspond to the dominant 3D spatial frequencies of the object. We demonstrate that our approach can visualize and analyze the dominant axial internal structure for each image point in real time and with nanoscale sensitivity to structural changes. Computer modeling and experimental results of instantaneous color visualization and quantification of 3D structures of a model system and biological samples are presented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge; New York, 1999).
  2. E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969).
    [CrossRef]
  3. V. I. Kukulin, V. N. Pomerantsev, and J. Horácek, “Reconstruction of the potential from scattering data,” Phys. Rev. A42(5), 2719–2727 (1990).
    [CrossRef] [PubMed]
  4. O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt.57(9), 686–699 (2010).
    [CrossRef]
  5. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett.97(16), 168102 (2006).
    [CrossRef] [PubMed]
  6. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009).
    [CrossRef] [PubMed]
  7. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008).
    [CrossRef] [PubMed]
  8. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express7(9), 305–310 (2000).
    [CrossRef] [PubMed]
  9. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett.34(5), 653–655 (2009).
    [CrossRef] [PubMed]
  10. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett.34(1), 79–81 (2009).
    [CrossRef] [PubMed]
  11. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
    [CrossRef] [PubMed]
  12. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett.30(24), 3305–3307 (2005).
    [CrossRef] [PubMed]
  13. T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy,” Opt. Express14(23), 11088–11102 (2006).
    [CrossRef] [PubMed]
  14. Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett.30(18), 2445–2447 (2005).
    [CrossRef] [PubMed]
  15. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
    [CrossRef]
  16. K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res.69(3), 1199–1204 (2009).
    [CrossRef] [PubMed]
  17. A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003).
    [CrossRef] [PubMed]
  18. T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Three-dimensional depth-resolved and extended-resolution micro-particle characterization by holographic light scattering spectroscopy,” Opt. Express18(24), 25116–25126 (2010).
    [CrossRef] [PubMed]
  19. N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: subcellular morphometry in situ with Fourier filtering,” Opt. Lett.26(14), 1063–1065 (2001).
    [CrossRef] [PubMed]
  20. R. M. Pasternack, Z. Qian, J. Y. Zheng, D. N. Metaxas, and N. N. Boustany, “Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters,” Opt. Express17(14), 12001–12012 (2009).
    [CrossRef] [PubMed]
  21. B. A. R. M. Rangayyan and C. Serrano, Color Image Processing with Biomedical Applications (SPIE Press, Bellingham, Washington, 2011).
  22. D. B. Judd and G. Wyszecki, Color in business, science, and industry (Wiley, New York, 1975).
  23. D. W. Holder and R. J. North, “A Schlieren apparatus giving an image in colour,” Nature169(4298), 466 (1952).
    [CrossRef]
  24. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, Berlin; New York, 2001).
  25. J. Bescos and T. C. Strand, “Optical pseudocolor encoding of spatial frequency information,” Appl. Opt.17(16), 2524–2531 (1978).
    [PubMed]
  26. F. T. S. Yu, S. L. Zhuang, T. H. Chao, and M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt.19(17), 2986–2990 (1980).
    [CrossRef] [PubMed]
  27. S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency,” J. Opt. A, Pure Appl. Opt.10(2), 025304 (2008).
    [CrossRef]
  28. S. A. Alexandrov, S. Uttam, R. K. Bista, and Y. Liu, “Spectral contrast imaging microscopy,” Opt. Lett.36(17), 3323–3325 (2011).
    [CrossRef] [PubMed]
  29. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express15(21), 13640–13648 (2007).
    [CrossRef] [PubMed]
  30. S. K. Shevell, The Science of Color (Elsevier, Amsterdam; Boston, 2003).
  31. N. T. Clancy, D. Stoyanov, L. Maier-Hein, A. Groch, G. Z. Yang, and D. S. Elson, “Spectrally encoded fiber-based structured lighting probe for intraoperative 3D imaging,” Biomed. Opt. Express2(11), 3119–3128 (2011).
    [CrossRef] [PubMed]
  32. K. Chen, A. Taflove, Y. L. Kim, and V. Backman, “Self-assembled patterns of nanospheres with symmetries from submicrons to centimeters,” Appl. Phys. Lett.86(3), 033101 (2005).
    [CrossRef]
  33. Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, “Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method,” Synth. Met.159(17-18), 1744–1750 (2009).
    [CrossRef]
  34. P. Wang, R. Bista, R. Bhargava, R. E. Brand, and Y. Liu, “Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis,” Opt. Lett.35(17), 2840–2842 (2010).
    [CrossRef] [PubMed]
  35. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
    [CrossRef] [PubMed]

2011

2010

2009

2008

V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008).
[CrossRef] [PubMed]

S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency,” J. Opt. A, Pure Appl. Opt.10(2), 025304 (2008).
[CrossRef]

2007

2006

2005

2003

A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

2001

2000

M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express7(9), 305–310 (2000).
[CrossRef] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

1998

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

1990

V. I. Kukulin, V. N. Pomerantsev, and J. Horácek, “Reconstruction of the potential from scattering data,” Phys. Rev. A42(5), 2719–2727 (1990).
[CrossRef] [PubMed]

1980

1978

1969

E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969).
[CrossRef]

1952

D. W. Holder and R. J. North, “A Schlieren apparatus giving an image in colour,” Nature169(4298), 466 (1952).
[CrossRef]

Alexandrov, S. A.

S. A. Alexandrov, S. Uttam, R. K. Bista, and Y. Liu, “Spectral contrast imaging microscopy,” Opt. Lett.36(17), 3323–3325 (2011).
[CrossRef] [PubMed]

T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Three-dimensional depth-resolved and extended-resolution micro-particle characterization by holographic light scattering spectroscopy,” Opt. Express18(24), 25116–25126 (2010).
[CrossRef] [PubMed]

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009).
[CrossRef] [PubMed]

S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency,” J. Opt. A, Pure Appl. Opt.10(2), 025304 (2008).
[CrossRef]

T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy,” Opt. Express14(23), 11088–11102 (2006).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett.97(16), 168102 (2006).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett.30(24), 3305–3307 (2005).
[CrossRef] [PubMed]

Arendt, J. T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Backman, V.

Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett.30(18), 2445–2447 (2005).
[CrossRef] [PubMed]

K. Chen, A. Taflove, Y. L. Kim, and V. Backman, “Self-assembled patterns of nanospheres with symmetries from submicrons to centimeters,” Appl. Phys. Lett.86(3), 033101 (2005).
[CrossRef]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Badizadegan, K.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Belkebir, K.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt.57(9), 686–699 (2010).
[CrossRef]

Bescos, J.

Bhargava, R.

Bista, R.

Bista, R. K.

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

Boustany, N. N.

Brand, R. E.

Chalut, K. J.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res.69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

Chao, T. H.

Chen, K.

K. Chen, A. Taflove, Y. L. Kim, and V. Backman, “Self-assembled patterns of nanospheres with symmetries from submicrons to centimeters,” Appl. Phys. Lett.86(3), 033101 (2005).
[CrossRef]

Clancy, N. T.

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

Colomb, T.

Crawford, J. M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Dasari, R. R.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Debailleul, M.

Depeursinge, C.

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

Dymek, M. S.

Elson, D. S.

Feld, M. S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Ferreira, C.

Fitzmaurice, M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

Fu, Y. N.

Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, “Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method,” Synth. Met.159(17-18), 1744–1750 (2009).
[CrossRef]

García, J.

Georges, V.

Giacomelli, M. G.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res.69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

Giovaninni, H.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt.57(9), 686–699 (2010).
[CrossRef]

Groch, A.

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

Gurjar, R.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Gutzler, T.

Haeberle, O.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt.57(9), 686–699 (2010).
[CrossRef]

Haeberlé, O.

Hamano, T.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Hillman, T. R.

Holder, D. W.

D. W. Holder and R. J. North, “A Schlieren apparatus giving an image in colour,” Nature169(4298), 466 (1952).
[CrossRef]

Horácek, J.

V. I. Kukulin, V. N. Pomerantsev, and J. Horácek, “Reconstruction of the potential from scattering data,” Phys. Rev. A42(5), 2719–2727 (1990).
[CrossRef] [PubMed]

Itzkan, I.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Izatt, J. A.

Jin, Z. G.

Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, “Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method,” Synth. Met.159(17-18), 1744–1750 (2009).
[CrossRef]

Kabani, S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Kim, M. K.

Kim, Y. L.

Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett.30(18), 2445–2447 (2005).
[CrossRef] [PubMed]

K. Chen, A. Taflove, Y. L. Kim, and V. Backman, “Self-assembled patterns of nanospheres with symmetries from submicrons to centimeters,” Appl. Phys. Lett.86(3), 033101 (2005).
[CrossRef]

Kline, E.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Kou, S. S.

Kühn, J.

Kukulin, V. I.

V. I. Kukulin, V. N. Pomerantsev, and J. Horácek, “Reconstruction of the potential from scattering data,” Phys. Rev. A42(5), 2719–2727 (1990).
[CrossRef] [PubMed]

Kuo, S. C.

Levin, H. S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Li, X.

Lima, C.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Liu, G. Q.

Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, “Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method,” Synth. Met.159(17-18), 1744–1750 (2009).
[CrossRef]

Liu, Y.

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

Maier-Hein, L.

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

Manoharan, R.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Marquet, P.

McGilligan, J. A.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Metaxas, D. N.

Micó, V.

Montfort, F.

Moratal, C.

Morin, R.

Müller, M. G.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

North, R. J.

D. W. Holder and R. J. North, “A Schlieren apparatus giving an image in colour,” Nature169(4298), 466 (1952).
[CrossRef]

Nusrat, A.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Ostrander, J. H.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res.69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

Pasternack, R. M.

Pavillon, N.

Perelman, L. T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Pomerantsev, V. N.

V. I. Kukulin, V. N. Pomerantsev, and J. Horácek, “Reconstruction of the potential from scattering data,” Phys. Rev. A42(5), 2719–2727 (1990).
[CrossRef] [PubMed]

Qian, Z.

Rappaz, B.

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

Sampson, D. D.

Seiler, M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Sentenac, A.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt.57(9), 686–699 (2010).
[CrossRef]

Shapshay, S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Shields, S.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Simon, B.

Stoyanov, D.

Strand, T. C.

Taflove, A.

K. Chen, A. Taflove, Y. L. Kim, and V. Backman, “Self-assembled patterns of nanospheres with symmetries from submicrons to centimeters,” Appl. Phys. Lett.86(3), 033101 (2005).
[CrossRef]

Thakor, N. V.

Uttam, S.

Valdez, T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Van Dam, J.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Wallace, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Wallace, M. B.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Wang, P.

Wax, A.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res.69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003).
[CrossRef] [PubMed]

Wolf, E.

E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969).
[CrossRef]

Yang, C. H.

Yang, G. Z.

Yin, Y. X.

Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, “Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method,” Synth. Met.159(17-18), 1744–1750 (2009).
[CrossRef]

Yu, F. T. S.

Zalevsky, Z.

Zhang, Q.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Zheng, J. Y.

Zhuang, S. L.

Zonios, G.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Chen, A. Taflove, Y. L. Kim, and V. Backman, “Self-assembled patterns of nanospheres with symmetries from submicrons to centimeters,” Appl. Phys. Lett.86(3), 033101 (2005).
[CrossRef]

Biomed. Opt. Express

Cancer Res.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res.69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003).
[CrossRef] [PubMed]

J. Mod. Opt.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt.57(9), 686–699 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency,” J. Opt. A, Pure Appl. Opt.10(2), 025304 (2008).
[CrossRef]

Nature

D. W. Holder and R. J. North, “A Schlieren apparatus giving an image in colour,” Nature169(4298), 466 (1952).
[CrossRef]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Opt. Commun.

E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969).
[CrossRef]

Opt. Express

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009).
[CrossRef] [PubMed]

R. M. Pasternack, Z. Qian, J. Y. Zheng, D. N. Metaxas, and N. N. Boustany, “Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters,” Opt. Express17(14), 12001–12012 (2009).
[CrossRef] [PubMed]

T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Three-dimensional depth-resolved and extended-resolution micro-particle characterization by holographic light scattering spectroscopy,” Opt. Express18(24), 25116–25126 (2010).
[CrossRef] [PubMed]

M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express7(9), 305–310 (2000).
[CrossRef] [PubMed]

T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy,” Opt. Express14(23), 11088–11102 (2006).
[CrossRef] [PubMed]

S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express15(21), 13640–13648 (2007).
[CrossRef] [PubMed]

V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008).
[CrossRef] [PubMed]

Opt. Lett.

M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett.34(1), 79–81 (2009).
[CrossRef] [PubMed]

J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett.34(5), 653–655 (2009).
[CrossRef] [PubMed]

N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: subcellular morphometry in situ with Fourier filtering,” Opt. Lett.26(14), 1063–1065 (2001).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003).
[CrossRef] [PubMed]

Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett.30(18), 2445–2447 (2005).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett.30(24), 3305–3307 (2005).
[CrossRef] [PubMed]

S. A. Alexandrov, S. Uttam, R. K. Bista, and Y. Liu, “Spectral contrast imaging microscopy,” Opt. Lett.36(17), 3323–3325 (2011).
[CrossRef] [PubMed]

P. Wang, R. Bista, R. Bhargava, R. E. Brand, and Y. Liu, “Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis,” Opt. Lett.35(17), 2840–2842 (2010).
[CrossRef] [PubMed]

Phys. Rev. A

V. I. Kukulin, V. N. Pomerantsev, and J. Horácek, “Reconstruction of the potential from scattering data,” Phys. Rev. A42(5), 2719–2727 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett.97(16), 168102 (2006).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80(3), 627–630 (1998).
[CrossRef]

Synth. Met.

Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, “Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method,” Synth. Met.159(17-18), 1744–1750 (2009).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge; New York, 1999).

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, Berlin; New York, 2001).

S. K. Shevell, The Science of Color (Elsevier, Amsterdam; Boston, 2003).

B. A. R. M. Rangayyan and C. Serrano, Color Image Processing with Biomedical Applications (SPIE Press, Bellingham, Washington, 2011).

D. B. Judd and G. Wyszecki, Color in business, science, and industry (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of Rt SESF approach. (a) Representation of the spatial frequencies in (K)-space at tilted illumination; (b) At the normal incidence, the projection of three different spatial frequency ranges, describing three characteristic axial structures, onto the Fourier plane, forming three image areas on the image with three distinct dominant colors.

Fig. 2
Fig. 2

In the reflection configuration, (a) the dependence of axial (red) and lateral (green) spatial periods on the backscattering angle (α) at the given wavelength of 500 nm; (b) the dependence of axial (red) and lateral (green) spatial frequency on the wavelength (α = 15⁰); and (c) the dependence of axial spatial periods on the backscattering angle, which shows the uncertainty in quantification of the axial spatial periods within a moderate collection angle of 30⁰. ΔHz is defined as the maximum theoretical uncertainty.

Fig. 3
Fig. 3

Numerical modeling: (a) representative slices and spatial profiles of the axial structures of the 3D object, (b) bright-field image, (c) Rt-SESF image. Color bar shows the wavelength and the corresponding spatial period of axial structures.

Fig. 4
Fig. 4

Schematic of the Rt-SESF system. S: sample; IP: image plane; FP: Fourier plane.

Fig. 5
Fig. 5

Bright-field (a) high resolution (NA = 0.5) and (b) low resolution (NA = 0.06) images of the HR USAF target; (d), (e) Rt-SESF images (NA = 0.06) of the selected area (c) in the image (b). Colorbar shows the dominant wavelength and corresponfing spatial frequency.

Fig. 6
Fig. 6

Rt-SESF imaging of 3D structures of the multilayered nanosphere aggregates at four distinct diameters. (a), (b) Illustration of the configuration of the nanosphere aggregates. (c) Conventional bright field images. (d), (e) Rt-SESF images and Fourier plane images respectively. (f) Axial spatial periods for the averaged dominant structure of each sample. (g) Distribution of axial spatial period along the lateral direction in the Fourier plane. (h) The dependence of the wavelength on the backscattering angle for the axial structure (axial spatial frequency 3333 1/mm) and lateral structure (lateral spatial frequency 1000 1/mm).

Fig. 7
Fig. 7

Bright-field (a), (c) and Rt-SESF (in the image plane) (b), (d) images of normal cells from a patient with negative for intra-epithelial lesions or malignancies (NILM) and high-grade squamous intra-epithelial lesions (HSIL) cells; (e) dominant wavelengths and (f) sizes of the dominant axial structure (Hz) within the cell nuclei, derived from the statistical analysis of nine patients with NILM and nine patients with HSIL. Error bars represent the standard error of mean. Scale bar is 10 microns for Figs (a)-(d).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

v x = n 0 ( sinαsinθ )cosϕ /λ
v y = n 0 ( sinαsinθ )sinϕ /λ
v z = n 0 ( cosθ+cosα ) /λ
Δ H z = λ( 1cosα ) / 2 n 0 (1+cosα) ,
δ H z = Δλ / n 0 ( cosθ+cosα ) ,

Metrics