Abstract

The dorsal wing surfaces of papilionid butterflies of the nireus group are marked by bands of brilliant blue-green-colored cover scales. The thin, cuticular lower lamina of the scales acts as a blue reflector. The thick upper lamina forms a dense two-dimensional cuticular lattice of air cavities with a pigment acting as a long-pass optical filter. Reflectance spectra of small scale areas oscillate, but for large scale areas and the intact wing they are smooth. Theoretical modeling shows that the oscillations vanish for a scale ensemble with varying layer thicknesses and cavity dimensions. The scales combine in a subtle way structural and pigmentary coloration for an optical effect.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution Press, 1991).
  2. H. Ghiradella, “Hairs, bristles, and scales,” in Microscopic Anatomy of Invertebrates, M. Locke, ed. (Wiley-Liss, 1998), pp. 257–287.
  3. N. I. Morehouse, P. Vukusic, and R. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. Biol. Sci.274(1608), 359–366 (2007).
    [CrossRef] [PubMed]
  4. B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol.53(12), 1206–1217 (2007).
    [CrossRef] [PubMed]
  5. S. M. Luke, P. Vukusic, and B. Hallam, “Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales,” Opt. Express17(17), 14729–14743 (2009).
    [CrossRef] [PubMed]
  6. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev.99(7), 1935–1962 (1999).
    [CrossRef] [PubMed]
  7. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  8. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).
  9. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
    [CrossRef]
  10. L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev.5(1), 27–51 (2011).
    [CrossRef]
  11. L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
    [CrossRef]
  12. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
    [CrossRef]
  13. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
    [CrossRef] [PubMed]
  14. K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
    [CrossRef] [PubMed]
  15. B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, “Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers,” J. R. Soc. Interface6(Suppl 2), S185–S192 (2009).
    [PubMed]
  16. A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
    [CrossRef] [PubMed]
  17. K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
    [CrossRef] [PubMed]
  18. K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface7(46), 765–771 (2010).
    [CrossRef] [PubMed]
  19. B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales,” Interface Focus, published online before print December 21, 2011, doi: 10.1098/rsfs.2011.0082 (2011).
    [CrossRef]
  20. V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
    [CrossRef] [PubMed]
  21. C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem.31(12), 1856–1872 (1927).
    [CrossRef]
  22. H. Ghiradella, “Structure and development of iridescent Lepidopteran scales - the Papilionidae as a showcase family,” Ann. Entomol. Soc. Am.78, 252–264 (1985).
  23. J. Huxley, “Coloration of Papilio zalmoxis and P. antimachus, and discovery of Tyndall blue in butterflies,” Proc. R. Soc. Lond. B Biol. Sci.193(1113), 441–453 (1976).
    [CrossRef]
  24. R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol.209(4), 748–765 (2006).
    [CrossRef] [PubMed]
  25. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science310(5751), 1151 (2005).
    [CrossRef] [PubMed]
  26. D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express17(1), 193–202 (2009).
    [CrossRef] [PubMed]
  27. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(2Suppl 2), S133–S148 (2009).
    [PubMed]
  28. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London Ser. B366(1565), 709–723 (2011).
    [CrossRef] [PubMed]
  29. S. J. Orfanidis, “Electromagnetic Waves and Antennas,” www.ece.rutgers.edu/~orfanidi/ewa/ (2010).
  30. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
    [CrossRef] [PubMed]
  31. P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001).
    [CrossRef] [PubMed]
  32. B. D. Wilts, T. M. Trzeciak, P. Vukusic, and D. G. Stavenga, “Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids,” J. Exp. Biol.215(5), 796–805 (2012).
    [CrossRef] [PubMed]
  33. D. J. Brink and M. E. Lee, “Confined blue iridescence by a diffracting microstructure: an optical investigation of the Cynandra opis butterfly,” Appl. Opt.38(25), 5282–5289 (1999).
    [CrossRef] [PubMed]
  34. E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn.77(12), 124801 (2008).
    [CrossRef]
  35. D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol.214(23), 3960–3967 (2011).
    [CrossRef] [PubMed]
  36. H. Ghiradella, “Structure of iridescent Lepidopteran scales - variations on several themes,” Ann. Entomol. Soc. Am.77, 637–645 (1984).
  37. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt.30(24), 3492–3500 (1991).
    [CrossRef] [PubMed]
  38. L. Poladian, S. Wickham, K. Lee, and M. C. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(2Suppl 2), S233–S242 (2009).
    [PubMed]
  39. M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
    [CrossRef] [PubMed]
  40. M. Barbier, “The status of blue-green bile-pigments of butterflies, and their phototransformations,” Experientia37(10), 1060–1062 (1981).
    [CrossRef]
  41. M. Choussy and M. Barbier, “Pigments biliaires des lépidoptères: identification de la phorcabiline I et de la sarpédobiline chez diverses espèces,” Biochem. Syst.1(4), 199–201 (1973).
    [CrossRef]
  42. D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol.213(10), 1731–1739 (2010).
    [CrossRef] [PubMed]

2012

B. D. Wilts, T. M. Trzeciak, P. Vukusic, and D. G. Stavenga, “Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids,” J. Exp. Biol.215(5), 796–805 (2012).
[CrossRef] [PubMed]

2011

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London Ser. B366(1565), 709–723 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol.214(23), 3960–3967 (2011).
[CrossRef] [PubMed]

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev.5(1), 27–51 (2011).
[CrossRef]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

2010

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface7(46), 765–771 (2010).
[CrossRef] [PubMed]

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol.213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

2009

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express17(1), 193–202 (2009).
[CrossRef] [PubMed]

S. M. Luke, P. Vukusic, and B. Hallam, “Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales,” Opt. Express17(17), 14729–14743 (2009).
[CrossRef] [PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(2Suppl 2), S133–S148 (2009).
[PubMed]

L. Poladian, S. Wickham, K. Lee, and M. C. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(2Suppl 2), S233–S242 (2009).
[PubMed]

B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, “Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers,” J. R. Soc. Interface6(Suppl 2), S185–S192 (2009).
[PubMed]

2008

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
[CrossRef] [PubMed]

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn.77(12), 124801 (2008).
[CrossRef]

2007

N. I. Morehouse, P. Vukusic, and R. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. Biol. Sci.274(1608), 359–366 (2007).
[CrossRef] [PubMed]

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol.53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

2006

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol.209(4), 748–765 (2006).
[CrossRef] [PubMed]

2005

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science310(5751), 1151 (2005).
[CrossRef] [PubMed]

2003

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2002

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
[CrossRef] [PubMed]

2001

1999

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev.99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

D. J. Brink and M. E. Lee, “Confined blue iridescence by a diffracting microstructure: an optical investigation of the Cynandra opis butterfly,” Appl. Opt.38(25), 5282–5289 (1999).
[CrossRef] [PubMed]

1991

1985

H. Ghiradella, “Structure and development of iridescent Lepidopteran scales - the Papilionidae as a showcase family,” Ann. Entomol. Soc. Am.78, 252–264 (1985).

1984

H. Ghiradella, “Structure of iridescent Lepidopteran scales - variations on several themes,” Ann. Entomol. Soc. Am.77, 637–645 (1984).

1981

M. Barbier, “The status of blue-green bile-pigments of butterflies, and their phototransformations,” Experientia37(10), 1060–1062 (1981).
[CrossRef]

1976

J. Huxley, “Coloration of Papilio zalmoxis and P. antimachus, and discovery of Tyndall blue in butterflies,” Proc. R. Soc. Lond. B Biol. Sci.193(1113), 441–453 (1976).
[CrossRef]

1973

M. Choussy and M. Barbier, “Pigments biliaires des lépidoptères: identification de la phorcabiline I et de la sarpédobiline chez diverses espèces,” Biochem. Syst.1(4), 199–201 (1973).
[CrossRef]

1927

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem.31(12), 1856–1872 (1927).
[CrossRef]

Argyros, A.

A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
[CrossRef] [PubMed]

Bálint, Z.

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Barbier, M.

M. Barbier, “The status of blue-green bile-pigments of butterflies, and their phototransformations,” Experientia37(10), 1060–1062 (1981).
[CrossRef]

M. Choussy and M. Barbier, “Pigments biliaires des lépidoptères: identification de la phorcabiline I et de la sarpédobiline chez diverses espèces,” Biochem. Syst.1(4), 199–201 (1973).
[CrossRef]

Baumberg, J. J.

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Biró, L. P.

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev.5(1), 27–51 (2011).
[CrossRef]

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Brink, D. J.

Choussy, M.

M. Choussy and M. Barbier, “Pigments biliaires des lépidoptères: identification de la phorcabiline I et de la sarpédobiline chez diverses espèces,” Biochem. Syst.1(4), 199–201 (1973).
[CrossRef]

Cox, G. C.

A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
[CrossRef] [PubMed]

De Raedt, H.

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface7(46), 765–771 (2010).
[CrossRef] [PubMed]

Dufresne, E. R.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Dwarte, D. M.

A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
[CrossRef] [PubMed]

Ghiradella, H.

H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt.30(24), 3492–3500 (1991).
[CrossRef] [PubMed]

H. Ghiradella, “Structure and development of iridescent Lepidopteran scales - the Papilionidae as a showcase family,” Ann. Entomol. Soc. Am.78, 252–264 (1985).

H. Ghiradella, “Structure of iridescent Lepidopteran scales - variations on several themes,” Ann. Entomol. Soc. Am.77, 637–645 (1984).

Giraldo, M. A.

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol.213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

Hallam, B.

Hariyama, T.

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London Ser. B366(1565), 709–723 (2011).
[CrossRef] [PubMed]

Hooper, I.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science310(5751), 1151 (2005).
[CrossRef] [PubMed]

Huang, F.

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Huxley, J.

J. Huxley, “Coloration of Papilio zalmoxis and P. antimachus, and discovery of Tyndall blue in butterflies,” Proc. R. Soc. Lond. B Biol. Sci.193(1113), 441–453 (1976).
[CrossRef]

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Kertész, K.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Kértesz, K.

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn.77(12), 124801 (2008).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Kolle, M.

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Large, M. C.

L. Poladian, S. Wickham, K. Lee, and M. C. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(2Suppl 2), S233–S242 (2009).
[PubMed]

A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
[CrossRef] [PubMed]

Lawrence, C.

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Lee, K.

L. Poladian, S. Wickham, K. Lee, and M. C. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(2Suppl 2), S233–S242 (2009).
[PubMed]

Lee, M. E.

Leertouwer, H. L.

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol.214(23), 3960–3967 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London Ser. B366(1565), 709–723 (2011).
[CrossRef] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol.213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, “Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers,” J. R. Soc. Interface6(Suppl 2), S185–S192 (2009).
[PubMed]

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express17(1), 193–202 (2009).
[CrossRef] [PubMed]

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol.53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

Lousse, V.

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Luke, S. M.

Mahajan, S.

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Manos, S.

A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
[CrossRef] [PubMed]

Márk, G. I.

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Mason, C. W.

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem.31(12), 1856–1872 (1927).
[CrossRef]

McKenzie, D. R.

A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
[CrossRef] [PubMed]

Michielsen, K.

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface7(46), 765–771 (2010).
[CrossRef] [PubMed]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
[CrossRef] [PubMed]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

Mochrie, S. G.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Morehouse, N. I.

N. I. Morehouse, P. Vukusic, and R. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. Biol. Sci.274(1608), 359–366 (2007).
[CrossRef] [PubMed]

Nakamura, E.

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn.77(12), 124801 (2008).
[CrossRef]

Narayanan, S.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Noh, H.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Osuji, C. O.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Pirih, P.

Poladian, L.

L. Poladian, S. Wickham, K. Lee, and M. C. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(2Suppl 2), S233–S242 (2009).
[PubMed]

Prum, R. O.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol.209(4), 748–765 (2006).
[CrossRef] [PubMed]

Quinn, T.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol.209(4), 748–765 (2006).
[CrossRef] [PubMed]

Rassart, M.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Rutowski, R.

N. I. Morehouse, P. Vukusic, and R. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. Biol. Sci.274(1608), 359–366 (2007).
[CrossRef] [PubMed]

Salgard-Cunha, P. M.

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Sambles, R.

Sandy, A.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Saranathan, V.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Scherer, M. R.

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Srinivasarao, M.

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev.99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

Stavenga, D. G.

B. D. Wilts, T. M. Trzeciak, P. Vukusic, and D. G. Stavenga, “Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids,” J. Exp. Biol.215(5), 796–805 (2012).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London Ser. B366(1565), 709–723 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol.214(23), 3960–3967 (2011).
[CrossRef] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol.213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface7(46), 765–771 (2010).
[CrossRef] [PubMed]

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express17(1), 193–202 (2009).
[CrossRef] [PubMed]

B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, “Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers,” J. R. Soc. Interface6(Suppl 2), S185–S192 (2009).
[PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(2Suppl 2), S133–S148 (2009).
[PubMed]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
[CrossRef] [PubMed]

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol.53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

Steiner, U.

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Tinbergen, J.

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol.214(23), 3960–3967 (2011).
[CrossRef] [PubMed]

Torres, R. H.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol.209(4), 748–765 (2006).
[CrossRef] [PubMed]

Trzeciak, T. M.

B. D. Wilts, T. M. Trzeciak, P. Vukusic, and D. G. Stavenga, “Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids,” J. Exp. Biol.215(5), 796–805 (2012).
[CrossRef] [PubMed]

Vértesy, Z.

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Vigneron, J.-P.

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev.5(1), 27–51 (2011).
[CrossRef]

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Vukusic, P.

B. D. Wilts, T. M. Trzeciak, P. Vukusic, and D. G. Stavenga, “Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids,” J. Exp. Biol.215(5), 796–805 (2012).
[CrossRef] [PubMed]

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

S. M. Luke, P. Vukusic, and B. Hallam, “Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales,” Opt. Express17(17), 14729–14743 (2009).
[CrossRef] [PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(2Suppl 2), S133–S148 (2009).
[PubMed]

N. I. Morehouse, P. Vukusic, and R. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. Biol. Sci.274(1608), 359–366 (2007).
[CrossRef] [PubMed]

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science310(5751), 1151 (2005).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Wakely, G.

Wehling, M. F.

Wickham, S.

L. Poladian, S. Wickham, K. Lee, and M. C. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(2Suppl 2), S233–S242 (2009).
[PubMed]

Wijnen, B.

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol.53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

Wilts, B. D.

B. D. Wilts, T. M. Trzeciak, P. Vukusic, and D. G. Stavenga, “Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids,” J. Exp. Biol.215(5), 796–805 (2012).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London Ser. B366(1565), 709–723 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol.214(23), 3960–3967 (2011).
[CrossRef] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, “Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers,” J. R. Soc. Interface6(Suppl 2), S185–S192 (2009).
[PubMed]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Yoshioka, S.

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn.77(12), 124801 (2008).
[CrossRef]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Ann. Entomol. Soc. Am.

H. Ghiradella, “Structure and development of iridescent Lepidopteran scales - the Papilionidae as a showcase family,” Ann. Entomol. Soc. Am.78, 252–264 (1985).

H. Ghiradella, “Structure of iridescent Lepidopteran scales - variations on several themes,” Ann. Entomol. Soc. Am.77, 637–645 (1984).

Appl. Opt.

Biochem. Syst.

M. Choussy and M. Barbier, “Pigments biliaires des lépidoptères: identification de la phorcabiline I et de la sarpédobiline chez diverses espèces,” Biochem. Syst.1(4), 199–201 (1973).
[CrossRef]

Chem. Rev.

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev.99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

Experientia

M. Barbier, “The status of blue-green bile-pigments of butterflies, and their phototransformations,” Experientia37(10), 1060–1062 (1981).
[CrossRef]

J. Exp. Biol.

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol.214(23), 3960–3967 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol.213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

B. D. Wilts, T. M. Trzeciak, P. Vukusic, and D. G. Stavenga, “Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids,” J. Exp. Biol.215(5), 796–805 (2012).
[CrossRef] [PubMed]

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol.209(4), 748–765 (2006).
[CrossRef] [PubMed]

J. Insect Physiol.

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol.53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

J. Phys. Chem.

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem.31(12), 1856–1872 (1927).
[CrossRef]

J. Phys. Soc. Jpn.

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn.77(12), 124801 (2008).
[CrossRef]

J. R. Soc. Interface

L. Poladian, S. Wickham, K. Lee, and M. C. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(2Suppl 2), S233–S242 (2009).
[PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(2Suppl 2), S133–S148 (2009).
[PubMed]

B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, “Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers,” J. R. Soc. Interface6(Suppl 2), S185–S192 (2009).
[PubMed]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
[CrossRef] [PubMed]

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface7(46), 765–771 (2010).
[CrossRef] [PubMed]

Laser Photonics Rev.

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev.5(1), 27–51 (2011).
[CrossRef]

Mater. Sci. Eng. C

L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007).
[CrossRef]

Micron

A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002).
[CrossRef] [PubMed]

Nat. Nanotechnol.

M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Nature

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Opt. Express

Philos. Trans. R. Soc. London Ser. B

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London Ser. B366(1565), 709–723 (2011).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006).
[CrossRef] [PubMed]

Proc. Biol. Sci.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

N. I. Morehouse, P. Vukusic, and R. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. Biol. Sci.274(1608), 359–366 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. B Biol. Sci.

J. Huxley, “Coloration of Papilio zalmoxis and P. antimachus, and discovery of Tyndall blue in butterflies,” Proc. R. Soc. Lond. B Biol. Sci.193(1113), 441–453 (1976).
[CrossRef]

Rep. Prog. Phys.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

Science

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science310(5751), 1151 (2005).
[CrossRef] [PubMed]

Other

H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution Press, 1991).

H. Ghiradella, “Hairs, bristles, and scales,” in Microscopic Anatomy of Invertebrates, M. Locke, ed. (Wiley-Liss, 1998), pp. 257–287.

S. J. Orfanidis, “Electromagnetic Waves and Antennas,” www.ece.rutgers.edu/~orfanidi/ewa/ (2010).

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales,” Interface Focus, published online before print December 21, 2011, doi: 10.1098/rsfs.2011.0082 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Photographs of the dorsal wings of the four investigated papilionid butterflies of the nireus group: (a) P. bromius, (b) P. epiphorbas, (c) P. nireus and (d) P. oribazus (scale bar: 1 cm).

Fig. 2
Fig. 2

Reflectance spectra of the colored bands in the wings of the four butterfly species of Fig. 1 (colored curves), together with a reflectance spectrum of the black marginal area of P. nireus (gray curve), measured at near normal illumination (~8°) with an integrating sphere.

Fig. 3
Fig. 3

Epi-illumination light microscopic image of a colored wing area of P. oribazus. The cover scales have a distinct blue color. The ground scales have a dark brown color (arrows; scale bar: 100 μm).

Fig. 4
Fig. 4

Reflectance and absorbance spectra of single, isolated wing scales of the four investigated papilionids measured with a microspectrophotometer (MSP). (a) Reflectance spectra measured at the upperside of single scales from an area 30x30 µm2. (b) Reflectance spectra measured from an area 4x4 µm2. (c) Absorbance spectra calculated from transmittance spectra measured from single scales immersed in refractive index matching fluid.

Fig. 5
Fig. 5

Near-field (a, c) and superimposed far-field scatterograms (b, d) for the underside (a, b) and upperside (c, d) of a single scale of P. epiphorbas. A scale area with ~40 μm diameter (dashed circle) was illuminated with a narrow-aperture (5°) white beam. The scale was rotated in three steps of 15° (from normal (0°), to 15°, 30°, and 45°; numbered 0, 1, 2, 3, respectively), causing a change of 30° in the direction of the reflected light beam (from normal, 0°, to 30°, 60°, and 90°); the arrows indicate the first 15° step. The red circles indicate angular directions with respect to the axis of 5°, 30°, 60°, and 90° (scale bar for (a) and (c): 50 μm).

Fig. 6
Fig. 6

Anatomy of the cover scales of the papilionids of Fig. 1. (a) A SEM image of a cut cover scale of P. bromius shows an upper lamina with thickness of approx. 1 μm, with ridges. The upper lamina has cylindrical cavities and rests on small pillars controlling the distance to the cuticle-air-cuticle triple layer (white arrows; scale bar: 2 μm). (b) TEM image of P. nireus showing the internal scale structure of the upper lamina of the scale and the lower lamina, which consists of three layers; the two outer layers are pigmented (black arrow; scale bar: 1 μm). (c) Diagram of the cover scale of the four investigated papilionid species.

Fig. 7
Fig. 7

Arrangement of the cavities in the upper lamina of the cover scales. (a) Top-view of the scale structure in P. oribazus (SEM image). (b) Result of the image analysis routine after segmentation of (a); only the image portion spanned by the white areas and the holes they contain was used for further data analysis. (c) Fast Fourier Transform (FFT) of (a). The ring-like structure indicates the order of the air holes (scale bars, in (a) and (b): 2 μm; in (c): 0.02 nm−1).

Fig. 8
Fig. 8

Reflectance spectra calculated for various multilayers for normal light incidence. (a) Reflectance spectra of the lower lamina, with thickness 200 nm and refractive index 1.56 (blue curve), of the isolated upper lamina, with thickness 1000 nm and effective refractive index 1.36 (red curve), and of the 3-layer system, consisting of the lower and upper lamina with either a 1450 or a 1550 nm air gap in between. The magenta curve is the average of the latter two, highly oscillating spectra. (b) The reflectance spectrum of the lower lamina of (a) together with the spectrum obtained by filtering this spectrum by the pigmented upper lamina which has the absorbance spectrum of Fig. 4(c) (compare the resulting red curve with Fig. 4(a)).

Fig. 9
Fig. 9

Reflectance spectra when the thicknesses of the three layers of the cover scales vary stochastically. Averaged reflectance spectra (blue curves) resulting from a 10% variation in the distance between the lower and upper lamina (a), the filling fraction of the upper lamina (b), and the thickness of the upper lamina (c). (d) Averaged reflectance spectra resulting from simultaneous variation of all thicknesses in the 3-layer system with different amounts of added noise. An increase in noise leads to a progressive smoothing of the spectra.

Fig. 10
Fig. 10

Reflectance spectrum of P. oribazus measured with an integrating sphere and the spectrum calculated for a 3-layer 1000/1500/220 nm system with 10% variation in both the thickness of the (absorbing) upper lamina and its distance from the lower lamina.

Tables (1)

Tables Icon

Table 1 Mean values and standard deviations for distributions of area equivalent diameter and cuticle filling fraction.

Metrics