Abstract

We present a standardized procedure to measure the amount of speckle in laser based projection systems. The parameters of the measurement procedure are chosen such that the measured speckle contrast values are in correspondence with the subjective speckle perception of a human observer, independent of the particularities of the laser projector’s illumination configuration. The resulting measurement configuration consists of a single digital image sensor in combination with a camera lens of which the settings are related to the human eye. In addition, a standardized measurement procedure and speckle pattern analysis method are suggested. Finally, the speckle measurement set-up is applied to a laser projection system and corresponding subjective speckle perception results of a large test public are discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt.49, 79–98 (2010).
    [CrossRef]
  2. J. Hecht, “A short history of laser development,” Appl. Opt.49, F99–F122 (2010).
    [CrossRef] [PubMed]
  3. U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID18, 813–820 (2010).
    [CrossRef]
  4. S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).
  5. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company, Englewood, 2007).
  6. F. Riechert, “Speckle reduction in projection systems,” Ph.D. thesis, (Karlsruhe Institute of Technology (KIT), 2009).
  7. P. Janssens, “Laser projector speckle measurements,” in 29th International Display Research Conference. EURODISPLAY 2009, Proc. SID, 5–7 (2009).
  8. Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symposium Digest39, 1347–1350 (2008).
    [CrossRef]
  9. J. Trisnadi, “Speckle contrast reduction in laser projection displays,” in: Projection Displays VIII, M. H. Wu, ed., Proc. SPIE 4657, 131–137 (2002).
  10. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66, 1145–1150 (1976).
    [CrossRef]
  11. J. W. Goodman, “Statistical properties of laser speckle patterns,” in: Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin/ Heidelberg, 1975), pp. 9–75.
    [CrossRef]
  12. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A27, 1812–1817 (2010).
    [CrossRef]
  13. D. Duncan and S. Kirkpatrick, “Algorithms for simulation of speckle (laser and otherwise),” in: Complex Dynamics and Fluctuations in Biomedical Photonics V, V. V. Tuchin and L. V. Wang, eds., Proc. SPIE 6855, 685505 (2008).
  14. J. Gollier, “Speckle measurement procedure,” Tech. rep., (Corning Incorporated, May 2010).
  15. D. Atchison and G. Smith, Optics of the human eye (Butterworth-Heinemann Medical, Oxford, 2000).
  16. C. Graham, Vision and visual perception (Wiley, New York, 1965).
  17. Digital Cinema Initiatives (DCI), DCI system requirements and specifications for digital cinema, Tech. Rep., (DCI, March, 2008).
  18. J. Pokorny and V. C. Smith, “How much light reaches the retina?,” Documenta Ophthalmologica Proceedings Series59, 491–512 (1997).
    [CrossRef]
  19. D. Kang, E. Clarkson, and T. D. Milster, “Effect of optical aberrations on Gaussian laser speckle,” Opt. Express17, 3084–3100 (2009).
    [CrossRef] [PubMed]
  20. W. J. Smith, Modern Optical Engineering (McGraw-Hill International Book CoNew York, 1966).
  21. E. Hecht, Optics (Addison-Wesley, Boston, 2002).
  22. C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292, 497–523 (1990).
    [CrossRef] [PubMed]
  23. H. Kolb, E. Fernandez, and R. Nelson, Webvision: the organization of the retina and visual system (National Library of Medicine, Bethesda, 2007).

2010

2009

2008

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symposium Digest39, 1347–1350 (2008).
[CrossRef]

1997

J. Pokorny and V. C. Smith, “How much light reaches the retina?,” Documenta Ophthalmologica Proceedings Series59, 491–512 (1997).
[CrossRef]

1990

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292, 497–523 (1990).
[CrossRef] [PubMed]

1976

Atchison, D.

D. Atchison and G. Smith, Optics of the human eye (Butterworth-Heinemann Medical, Oxford, 2000).

Avramescu, A.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Bellancourt, A.

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID18, 813–820 (2010).
[CrossRef]

Breidenassel, A.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Bruederl, G.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Chellappan, K.

K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt.49, 79–98 (2010).
[CrossRef]

Clarkson, E.

Curcio, C.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292, 497–523 (1990).
[CrossRef] [PubMed]

Dini, D.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Duncan, D.

D. Duncan and S. Kirkpatrick, “Algorithms for simulation of speckle (laser and otherwise),” in: Complex Dynamics and Fluctuations in Biomedical Photonics V, V. V. Tuchin and L. V. Wang, eds., Proc. SPIE 6855, 685505 (2008).

Eichler, C.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Erden, E.

K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt.49, 79–98 (2010).
[CrossRef]

Fernandez, E.

H. Kolb, E. Fernandez, and R. Nelson, Webvision: the organization of the retina and visual system (National Library of Medicine, Bethesda, 2007).

Gollier, J.

J. Gollier, “Speckle measurement procedure,” Tech. rep., (Corning Incorporated, May 2010).

Gomez-Iglesias, A.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Goodman, J. W.

J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66, 1145–1150 (1976).
[CrossRef]

J. W. Goodman, “Statistical properties of laser speckle patterns,” in: Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin/ Heidelberg, 1975), pp. 9–75.
[CrossRef]

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company, Englewood, 2007).

Graham, C.

C. Graham, Vision and visual perception (Wiley, New York, 1965).

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Boston, 2002).

Hecht, J.

Hendrickson, A.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292, 497–523 (1990).
[CrossRef] [PubMed]

Janssens, P.

P. Janssens, “Laser projector speckle measurements,” in 29th International Display Research Conference. EURODISPLAY 2009, Proc. SID, 5–7 (2009).

Kalina, R.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292, 497–523 (1990).
[CrossRef] [PubMed]

Kang, D.

Katagiri, B.

Kawakami, T.

Kirkpatrick, S.

D. Duncan and S. Kirkpatrick, “Algorithms for simulation of speckle (laser and otherwise),” in: Complex Dynamics and Fluctuations in Biomedical Photonics V, V. V. Tuchin and L. V. Wang, eds., Proc. SPIE 6855, 685505 (2008).

Koch, S.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Kolb, H.

H. Kolb, E. Fernandez, and R. Nelson, Webvision: the organization of the retina and visual system (National Library of Medicine, Bethesda, 2007).

Kuratomi, Y.

Lee, D. U.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symposium Digest39, 1347–1350 (2008).
[CrossRef]

Lee, S. G.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symposium Digest39, 1347–1350 (2008).
[CrossRef]

Lee, Y. M.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symposium Digest39, 1347–1350 (2008).
[CrossRef]

Lell, A.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Lermer, T.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Lutgen, S.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Mackens, U.

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID18, 813–820 (2010).
[CrossRef]

Milster, T. D.

Moench, H.

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID18, 813–820 (2010).
[CrossRef]

Müller, J.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Nelson, R.

H. Kolb, E. Fernandez, and R. Nelson, Webvision: the organization of the retina and visual system (National Library of Medicine, Bethesda, 2007).

Park, J. M.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symposium Digest39, 1347–1350 (2008).
[CrossRef]

Park, S. Y.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symposium Digest39, 1347–1350 (2008).
[CrossRef]

Pasenow, B.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Pietzonka, I.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Pokorny, J.

J. Pokorny and V. C. Smith, “How much light reaches the retina?,” Documenta Ophthalmologica Proceedings Series59, 491–512 (1997).
[CrossRef]

Riechert, F.

F. Riechert, “Speckle reduction in projection systems,” Ph.D. thesis, (Karlsruhe Institute of Technology (KIT), 2009).

Satoh, H.

Scheibenzuber, W. G.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Schwarz, U. T.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Sekiya, K.

Sloan, K.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292, 497–523 (1990).
[CrossRef] [PubMed]

Smith, G.

D. Atchison and G. Smith, Optics of the human eye (Butterworth-Heinemann Medical, Oxford, 2000).

Smith, V. C.

J. Pokorny and V. C. Smith, “How much light reaches the retina?,” Documenta Ophthalmologica Proceedings Series59, 491–512 (1997).
[CrossRef]

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill International Book CoNew York, 1966).

Strauss, U.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Suzuki, Y.

Tautz, S.

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

Tomiyama, T.

Trisnadi, J.

J. Trisnadi, “Speckle contrast reduction in laser projection displays,” in: Projection Displays VIII, M. H. Wu, ed., Proc. SPIE 4657, 131–137 (2002).

Uchida, T.

Urey, H.

K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt.49, 79–98 (2010).
[CrossRef]

Weichmann, U.

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID18, 813–820 (2010).
[CrossRef]

Appl. Opt.

K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt.49, 79–98 (2010).
[CrossRef]

J. Hecht, “A short history of laser development,” Appl. Opt.49, F99–F122 (2010).
[CrossRef] [PubMed]

Documenta Ophthalmologica Proceedings Series

J. Pokorny and V. C. Smith, “How much light reaches the retina?,” Documenta Ophthalmologica Proceedings Series59, 491–512 (1997).
[CrossRef]

J. Comp. Neurol.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292, 497–523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

JSID

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID18, 813–820 (2010).
[CrossRef]

Opt. Express

SID Symposium Digest

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symposium Digest39, 1347–1350 (2008).
[CrossRef]

Other

J. Trisnadi, “Speckle contrast reduction in laser projection displays,” in: Projection Displays VIII, M. H. Wu, ed., Proc. SPIE 4657, 131–137 (2002).

W. J. Smith, Modern Optical Engineering (McGraw-Hill International Book CoNew York, 1966).

E. Hecht, Optics (Addison-Wesley, Boston, 2002).

H. Kolb, E. Fernandez, and R. Nelson, Webvision: the organization of the retina and visual system (National Library of Medicine, Bethesda, 2007).

S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Gomez-Iglesias, U. Strauss, W. G. Scheibenzuber, U. T. Schwarz, B. Pasenow, and S. Koch, “Recent results of blue and green InGaN laser diodes for laser projection,” in Novel In-Plane Semiconductor Lasers X, A. A. Belyanin and P. M. Smowton, eds., Proc. SPIE 7953, 79530G (2011).

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company, Englewood, 2007).

F. Riechert, “Speckle reduction in projection systems,” Ph.D. thesis, (Karlsruhe Institute of Technology (KIT), 2009).

P. Janssens, “Laser projector speckle measurements,” in 29th International Display Research Conference. EURODISPLAY 2009, Proc. SID, 5–7 (2009).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in: Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin/ Heidelberg, 1975), pp. 9–75.
[CrossRef]

D. Duncan and S. Kirkpatrick, “Algorithms for simulation of speckle (laser and otherwise),” in: Complex Dynamics and Fluctuations in Biomedical Photonics V, V. V. Tuchin and L. V. Wang, eds., Proc. SPIE 6855, 685505 (2008).

J. Gollier, “Speckle measurement procedure,” Tech. rep., (Corning Incorporated, May 2010).

D. Atchison and G. Smith, Optics of the human eye (Butterworth-Heinemann Medical, Oxford, 2000).

C. Graham, Vision and visual perception (Wiley, New York, 1965).

Digital Cinema Initiatives (DCI), DCI system requirements and specifications for digital cinema, Tech. Rep., (DCI, March, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

An illustration of the speckle measurement configuration and the experimental laser projection setup.

Fig. 2
Fig. 2

Dependence of the speckle contrast on the f-number of the observer’s image lens. (a) Simulated effect of spatial averaging on the speckle contrast as a function of the square root of the ratio between the pixel area and the speckle size. (b) Dependence of the measured speckle contrast on the f-number of the observer configuration for suppressed and unsuppressed speckle.

Fig. 3
Fig. 3

Measured speckle contrast increases as a function of the reciprocal of the distance between the camera and the screen.

Fig. 4
Fig. 4

An illustration of the possibility to reduce speckle by translating the projection screen

Fig. 5
Fig. 5

The speckle contrast is measured as a function of the f-number at 470 and 700 mm.

Fig. 6
Fig. 6

The focus distance of the CCD lens exerts a large influence on the speckle contrast

Fig. 7
Fig. 7

Influence of the ratio of the image area to the average speckle size on the resulting speckle contrast.

Fig. 8
Fig. 8

Influence of the kernel area. (a) Speckle contrast as a function of the filter’s kernel area relative to the speckle size. (b) Background intensity fluctuations as a result of the speckle pattern filtering operation with A kernel / A c respectively 1.4, 2.7, 4.1, 5.5, 6.8 and 8.2.

Fig. 9
Fig. 9

The subjective speckle perception tests. (a) The color bars used in the subjective speckle perception tests. (b) A picture taken during the subjective speckle perceptions tests.

Fig. 10
Fig. 10

Human perception of speckle for different speckle contrast values.

Fig. 11
Fig. 11

Histograms of the human perception speckle tests for different speckle contrast values for (a) red, (b) green and (c) blue color bars.

Tables (2)

Tables Icon

Table 1 Overview of the necessary focal length for a given pixel width.

Tables Icon

Table 2 Measured speckle contrast values for different settings in the subjective speckle perception test (measured at a distance of one screen height).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

sin ( θ ) = 1.220 λ D
A c = λ 2 / Ω l
A c = 4 λ 2 ( f / # ) 2 π
f / # = π A p 1.17 λ 2
f = ( 3.2 × 10 3 m ) 2 π A p 1.17 λ 2 .

Metrics