Abstract

We present a novel optical method, to our knowledge, to measure the refractive index of liquids by means of the images produced by an optofluidic lens. In addition we propose a new method to make optofluidic lenses.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N.-T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
    [CrossRef] [PubMed]
  2. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011).
    [CrossRef] [PubMed]
  3. F. S. Tsai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
    [CrossRef] [PubMed]
  4. S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. M. Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48(12), 2308–2314 (2009).
    [CrossRef] [PubMed]
  5. R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973).
  6. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88(9), 093513 (2006).
    [CrossRef]
  7. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29(16), 1894–1896 (2004).
    [CrossRef] [PubMed]
  8. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  9. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  10. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47(6), 843–848 (2008).
    [CrossRef] [PubMed]
  11. http://www.dowcorning.com/content/rubber/silicone-rubber.aspx
  12. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, O. L. Torres-Rocha, E. M. Martinez-Prado, and M. Calixto-Solano, “Optofluidic compound lenses made with ionic liquids,” in Applications of Ionic Liquids in Science and Technology, S. Handy ed. (INTECH, Croatia, 2011).
  13. R. C. Weast, CRC Handbook of Chemistry and Physics, 65th ed., (CRC Press, 1985).
  14. S. Calixto, F. J. Sánchez-Marin, and M. E. Sánchez-Morales, “Pressure measurements through image analysis,” Opt. Express 17(20), 17996–18002 (2009).
    [CrossRef] [PubMed]
  15. A. A. Michelson, Studies in Optics (The University of Chicago Press, 1968).

2011

2010

N.-T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

2005

2004

Aljasem, K.

Barrera-Rivera, K. A.

Bernini, R.

Brambilla, G.

Calixto, S.

Campopiano, S.

Cho, S. H.

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Horak, P.

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Lo, Y.-H.

Mansuripur, M.

Minkovich, V. P.

Monzon-Hernandez, D.

Nguyen, N.-T.

N.-T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[CrossRef] [PubMed]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Richa, A. M.

Rosete-Aguilar, M.

Sánchez-Marin, F. J.

Sánchez-Morales, M. E.

Sarro, P. M.

Seifert, A.

Tsai, F. S.

Vasko, B.

Vasko, J.

Xu, F.

Zappe, H.

Zeni, L.

Zhang, W.

Appl. Opt.

Appl. Phys. Lett.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Biomicrofluidics

N.-T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973).

http://www.dowcorning.com/content/rubber/silicone-rubber.aspx

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, O. L. Torres-Rocha, E. M. Martinez-Prado, and M. Calixto-Solano, “Optofluidic compound lenses made with ionic liquids,” in Applications of Ionic Liquids in Science and Technology, S. Handy ed. (INTECH, Croatia, 2011).

R. C. Weast, CRC Handbook of Chemistry and Physics, 65th ed., (CRC Press, 1985).

A. A. Michelson, Studies in Optics (The University of Chicago Press, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Liquid lens fabrication sequence. a) Silicone mixture is poured in the acrylic square. A glass lens is inserted in the mixture. b) After curing acrylic square is taken out. c) silicone square is cut and the glass lens is taken away. d) Uncured silicone mixture is used to seal the cavity. e) Hollow lens is ready.

Fig. 2
Fig. 2

Photograph of a hollow lens. Water with a dye was introduced (injected) to make visible the cavity.

Fig. 3
Fig. 3

Profiles of a) glass lens, b) lens cavity and c) the difference of both curves.

Fig. 4
Fig. 4

Image forming by the hollow lens. So, object distance, Si, image distance. Figure not to scale.

Fig. 5
Fig. 5

Behavior of Back Focal Distance as a function of liquid refractive index. ● - experimental values, * - theoretical values.

Fig. 6
Fig. 6

Behavior of image distance, Si, as a function of object distance, So. Experimental (continuous curve) and theoretical points are plotted. Parameter is the liquid in the cavity.

Fig. 7
Fig. 7

Images given by a liquid lens when different liquids were fed into the cavity.

Fig. 8
Fig. 8

Diagram showing the steps to get the gray level curve.

Fig. 9
Fig. 9

Gray level as a function of pixel number. Parameter is the liquid refractive index.

Fig. 10
Fig. 10

Visibility of images as a function of the liquid refractive index. (o) - experimental values.

Tables (1)

Tables Icon

Table 1 Liquids used in the experiment

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V=V0+( A w π 2 )exp( 2 ( rrc w ) 2 )

Metrics