Abstract

We report direct observation of the 2D transverse near-field intensity and polarisation distribution of surface plasmon polaritons guided on metal nanowires. Quadrupolar modes are excited on an array of coupled nanowires arranged around the central glass core in a photonic crystal fibre, with lobes whose orientation depends on the polarisation state of the launched core light. The radial electric field is resolved using a polarization sensitive near-field probe in light-collection mode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings 1st ed., (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications 1st ed., (Springer, 2007).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength Optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  4. H. A. Atwater, “The Promise of Plasmonics,” Sci. Am.296(4), 56–62 (2007).
    [CrossRef] [PubMed]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the Diffraction Limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  6. E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett.31(18), 1127–1129 (1973).
    [CrossRef]
  7. E. Kretschmann and H. Raether, “Radiative Decay of non radiative Surface Plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).
  8. A. Otto, “Excitation of nonradiative Surface Plasma Waves in Silver by Method of frustrated total Reflection,” Z. Phys.216(4), 398–410 (1968).
    [CrossRef]
  9. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996).
    [CrossRef] [PubMed]
  10. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
    [CrossRef] [PubMed]
  11. L. Novotny and N. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).
    [CrossRef]
  12. R. A. Wahsheh, Z. L. Lu, and M. A. G. Abushagur, “Nanoplasmonic Couplers and Splitters,” Opt. Express17(21), 19033–19040 (2009).
    [CrossRef] [PubMed]
  13. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active Plasmonics,” Nat. Photonics3(1), 55–58 (2009).
    [CrossRef]
  14. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si Field Effect plasmonic Modulator,” Nano Lett.9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  15. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Directional coupling in Channel Plasmon-Polariton Waveguides,” Opt. Express20(6), 6124–6134 (2012).
    [CrossRef] [PubMed]
  16. A. Kriesch, J. Wen, D. Ploss, P. Banzer, and U. Peschel, “Probing nanoplasmonic Waveguides and Couplers with optical Antennas,” in CLEO/Europe and EQEC (Munich, 2011).
  17. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-Plasmon Circuitry,” Phys. Today61(5), 44–50 (2008).
    [CrossRef]
  18. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  19. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
    [CrossRef]
  20. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
    [CrossRef]
  21. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
    [CrossRef] [PubMed]
  22. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved Mapping of the near-field Vector and Polarization State in Nanoscale Antenna Gaps,” Nano Lett.10(9), 3524–3528 (2010).
    [CrossRef] [PubMed]
  23. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
    [CrossRef] [PubMed]
  24. M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon Modes on metallic Nanowires,” Opt. Express16(18), 13617–13623 (2008).
    [CrossRef] [PubMed]
  25. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic Model for the optical Properties of Gold,” J. Chem. Phys.125, 164705 (2006).
    [CrossRef] [PubMed]
  26. I. H. Malitson, “Interspecimen Comparison of Refractive Index of fused Silica,” J. Opt. Soc. Am.55(10), 1205–1208 (1965).
    [CrossRef]
  27. P. St. J. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  28. J. C. Knight, “Photonic Crystal Fibres,” Nature424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  29. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical Characterization of Au nano-wires in microstructured Fibers,” Opt. Express19(13), 12180–12189 (2011).
    [CrossRef] [PubMed]
  30. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  31. http://www.witec.de/en/home/
  32. P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
    [CrossRef]

2012

2011

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical Characterization of Au nano-wires in microstructured Fibers,” Opt. Express19(13), 12180–12189 (2011).
[CrossRef] [PubMed]

2010

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved Mapping of the near-field Vector and Polarization State in Nanoscale Antenna Gaps,” Nano Lett.10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the Diffraction Limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

2009

R. A. Wahsheh, Z. L. Lu, and M. A. G. Abushagur, “Nanoplasmonic Couplers and Splitters,” Opt. Express17(21), 19033–19040 (2009).
[CrossRef] [PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active Plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si Field Effect plasmonic Modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

2008

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon Modes on metallic Nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-Plasmon Circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

2007

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

H. A. Atwater, “The Promise of Plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

2006

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic Model for the optical Properties of Gold,” J. Chem. Phys.125, 164705 (2006).
[CrossRef] [PubMed]

2005

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength Optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic Crystal Fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

1996

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

1973

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett.31(18), 1127–1129 (1973).
[CrossRef]

1968

E. Kretschmann and H. Raether, “Radiative Decay of non radiative Surface Plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

A. Otto, “Excitation of nonradiative Surface Plasma Waves in Silver by Method of frustrated total Reflection,” Z. Phys.216(4), 398–410 (1968).
[CrossRef]

1965

Abushagur, M. A. G.

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved Mapping of the near-field Vector and Polarization State in Nanoscale Antenna Gaps,” Nano Lett.10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Alkorta, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved Mapping of the near-field Vector and Polarization State in Nanoscale Antenna Gaps,” Nano Lett.10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Alonso-Gonzalez, P.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Arakawa, E. T.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett.31(18), 1127–1129 (1973).
[CrossRef]

Arzubiaga, L.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si Field Effect plasmonic Modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

H. A. Atwater, “The Promise of Plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength Optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Biagioni, P.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Directional coupling in Channel Plasmon-Polariton Waveguides,” Opt. Express20(6), 6124–6134 (2012).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the Diffraction Limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-Plasmon Circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Casanova, F.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Cerullo, G.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Chuvilin, A.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength Optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si Field Effect plasmonic Modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si Field Effect plasmonic Modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Dorfmüller, J.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Duo, L.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

Ebbesen, T. W.

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Directional coupling in Channel Plasmon-Polariton Waveguides,” Opt. Express20(6), 6124–6134 (2012).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-Plasmon Circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength Optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic Model for the optical Properties of Gold,” J. Chem. Phys.125, 164705 (2006).
[CrossRef] [PubMed]

Etrich, C.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Finazzi, M.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved Mapping of the near-field Vector and Polarization State in Nanoscale Antenna Gaps,” Nano Lett.10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-Plasmon Circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the Diffraction Limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Hamm, R. N.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett.31(18), 1127–1129 (1973).
[CrossRef]

Han, Z.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Hillenbrand, R.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved Mapping of the near-field Vector and Polarization State in Nanoscale Antenna Gaps,” Nano Lett.10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Hueso, L. E.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Joly, N. Y.

Kern, K.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Kihm, H. W.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Kihm, J. E.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kim, D. S.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Kim, H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Kim, J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Knight, J. C.

J. C. Knight, “Photonic Crystal Fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative Decay of non radiative Surface Plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Kuipers, L. K.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Labardi, M.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic Model for the optical Properties of Gold,” J. Chem. Phys.125, 164705 (2006).
[CrossRef] [PubMed]

Lee, B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Lee, H. W.

Lee, K. G.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Lienau, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Lu, Z. L.

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active Plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Malitson, I. H.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic Model for the optical Properties of Gold,” J. Chem. Phys.125, 164705 (2006).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Otto, A.

A. Otto, “Excitation of nonradiative Surface Plasma Waves in Silver by Method of frustrated total Reflection,” Z. Phys.216(4), 398–410 (1968).
[CrossRef]

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Park, Q. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Polli, D.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

Polman, A.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Pucci, A.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative Decay of non radiative Surface Plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Ritchie, R. H.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett.31(18), 1127–1129 (1973).
[CrossRef]

Rockstuhl, C.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Ropers, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Ruggeri, G.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

Russell, P. St. J.

Russell, R. F.

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active Plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Schmidt, M. A.

Schnell, M.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved Mapping of the near-field Vector and Polarization State in Nanoscale Antenna Gaps,” Nano Lett.10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active Plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si Field Effect plasmonic Modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Tyagi, H. K.

Uebel, P.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Verhagen, E.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Vogelgesang, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Volkov, V. S.

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Wahsheh, R. A.

Williams, M. W.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett.31(18), 1127–1129 (1973).
[CrossRef]

Woo, H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Zenin, V. A.

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active Plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Appl. Phys. Lett.

P. Biagioni, D. Polli, M. Labardi, A. Pucci, G. Ruggeri, G. Cerullo, M. Finazzi, and L. Duo, “Unexpected Polarization Behavior at the Aperture of hollow-pyramid near-field Probes,” Appl. Phys. Lett.87(22), 223112 (2005).
[CrossRef]

J. Chem. Phys.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic Model for the optical Properties of Gold,” J. Chem. Phys.125, 164705 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Nano Lett.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved Mapping of the near-field Vector and Polarization State in Nanoscale Antenna Gaps,” Nano Lett.10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical Imaging of higher Order plasmonic Resonances,” Nano Lett.8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si Field Effect plasmonic Modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of electromagnetic Energy Transport below the Diffraction Limit in metal nanoparticle Plasmon Waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Nat. Photonics

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared Energy with tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active Plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the Diffraction Limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength Optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic Crystal Fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of Damping on Surface Plasmon Dispersion,” Phys. Rev. Lett.31(18), 1127–1129 (1973).
[CrossRef]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Phys. Today

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-Plasmon Circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Sci. Am.

H. A. Atwater, “The Promise of Plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

Science

P. St. J. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Z. Naturforsch. A

E. Kretschmann and H. Raether, “Radiative Decay of non radiative Surface Plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Z. Phys.

A. Otto, “Excitation of nonradiative Surface Plasma Waves in Silver by Method of frustrated total Reflection,” Z. Phys.216(4), 398–410 (1968).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings 1st ed., (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications 1st ed., (Springer, 2007).

A. Kriesch, J. Wen, D. Ploss, P. Banzer, and U. Peschel, “Probing nanoplasmonic Waveguides and Couplers with optical Antennas,” in CLEO/Europe and EQEC (Munich, 2011).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

http://www.witec.de/en/home/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of the device. (a) Schematic of the structure. (b) SEM of the polished cross-section of the sample with six rings of gold nanowires, making 120 in total. Dark grey is silica and light grey is gold.

Fig. 2
Fig. 2

Operation of the gold filled PCF (a) Calculated intensity distributions (vertical polarisation of the core light) at 840 nm for: the quadrupolar SPP mode of an isolated nanowire (left, the white dashed circle indicates the gold-silica interface), the even core-pSM mode (centre) and the odd core-pSM mode (right). The scale-bar corresponds to 0.5 µm for the left-hand panel and 3 µm for the centre and right-hand panels. (b) Refractive index difference (real part) between the simulated even and odd core-pSM modes (blue and black curves) and the glass core mode in the empty PCF (grey curve): Δn = (nSMnempty). The dashed red curve shows the same quantity for an isolated m = 2 SPP mode; it lies on top of the curve for the even core-pSM mode and cuts off at ~845 nm (red circle). The green dashed vertical line marks the wavelength (785 nm) of the laser diode used in the SNOM experiments. (c) Attenuation of the even and odd modes and of the isolated m = 2 SPP. The odd core-pSM cuts off at 890 nm. (d) Experiment (purple) and modelled attenuation (orange). The dashed purple horizontal line indicates the limit of the dynamic range of the optical spectrum analyser used.

Fig. 3
Fig. 3

Solutions of the nearest-neighbour coupling model for 18 nanowires plus core. The numbers represent the percentage of modal power at each site, the color code represents the phase (red is zero, black is π): (a) the quasi-even supermode (all nodes approximately in phase); (b) the quasi-odd supermode (each ring approximately π out of phase with its neighbour).

Fig. 4
Fig. 4

Experimental setup, SNOM results and FE-modeling of the near-field without analyser. (a) Sketch of the experimental set-up for the SNOM measurements (for details see text). LD: laser diode, P: polariser, λ/2: half-wave plate, O1-O2: microscope objectives, C: cantilever, A: analyser, L: lens, I: iris, APD: avalanche photo-diode. Experimentally measured near-fields and simulated FE results at 785 nm for (b) vertical and (c) horizontal polarisation of the PCF core mode (indicated by the white double-headed arrows). The white dashed circles show the gold-silica interface and the white dashed squares indicate the position of the nanowires. The purple arrows on the FEM plots show the direction of the local transverse electric field at a fixed moment in time (upper and lower plots taken together). The color bars show the correct scale for the lower images only. The upper images are saturated for a better contrast.

Fig. 5
Fig. 5

Polarisation-resolved near-field measurements and FE results at 785 nm for vertical input polarisation. The logarithmic intensity profiles of the modes are shown for two orientations of the analyser relative to the vertical input polarisation: (a) parallel configuration (b) orthogonal configuration (indicated by the yellow double-headed arrows). The modes shown in this figure correspond to the one shown in Fig. 4 (white dashed circles/squares, white double-headed arrows and color scale are the same).

Fig. 6
Fig. 6

Spatially resolved polarisation state of the near-field of a quadrupolar SPP mode. (a) The white double-headed arrows show the orientation of the electric field vectors (90 nm spacing) for the SNOM measurement, their lengths being proportional to the absolute value of the transverse electric field. For clarity, no arrows are shown at regions where the intensity is low. The red double-headed arrow shows the input polarisation state. (b) FE-simulations showing the local transverse electric field at a fixed moment in time. The underlying intensity patterns are the same as the two upper left-hand images in Fig. 3(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n m = ε M ε D ε M + ε D ( m1 k 0 ρ ) 2
d a k dz = α k a k +i p κ kp a p

Metrics