Abstract

We demonstrate that pulse shaping of a broadband Ti:sapphire laser can result in almost an order of magnitude increase in the sensitivity and signal to background ratio (SBR) of multiphoton total internal reflection fluorescence (TIRF) microscopy. We produced transform-limited pulses of 15 fs duration at the sample, and observed a 8-fold enhancement in the fluorescence of CdSe/ZnS quantum dots via two-photon objective-type TIRF excitation. There was a concomitant 6-fold increase of the SBR upon compression of the pulse duration. Enhancement of non-linear evanescent imaging has recently been demonstrated using surface-plasmons [Opt. Express 17, 5987 (2009)] and structured substrates [Opt. Express 18, 23218 (2010)]. Our approach of ultrafast pulse shaping could be used alone or combined with these new methods to offer significant gains in image quality.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Axelrod, “Chapter 7: Total internal reflection fluorescence microscopy,” Methods Cell Biol.89, 169–221 (2008).
    [CrossRef] [PubMed]
  2. D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc.129(1), 19–28 (1983).
    [CrossRef] [PubMed]
  3. O. Hollmann, R. Steitz, and C. Czeslik, “Structure and dynamics of α-lactalbumin adsorbed at a charged brush interface,” Phys. Chem. Chem. Phys.10(10), 1448–1456 (2008).
    [CrossRef] [PubMed]
  4. P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011).
    [CrossRef] [PubMed]
  5. A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
    [CrossRef] [PubMed]
  6. C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
    [CrossRef] [PubMed]
  7. B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
    [CrossRef] [PubMed]
  8. R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods5(6), 507–516 (2008).
    [CrossRef] [PubMed]
  9. G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003).
    [CrossRef] [PubMed]
  10. Z. Huang and N. L. Thompson, “Theory for two-photon excitation in pattern photobleaching with evanescent illumination,” Biophys. Chem.47(3), 241–249 (1993).
    [CrossRef] [PubMed]
  11. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett.21(22), 1848–1850 (1996).
    [CrossRef] [PubMed]
  12. I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Two-photon excitation by the evanescent wave from total internal reflection,” Anal. Biochem.247(1), 69–76 (1997).
    [CrossRef] [PubMed]
  13. F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J.32(7), 635–643 (2003).
    [CrossRef] [PubMed]
  14. M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D38(10), R185–R197 (2005).
    [CrossRef]
  15. G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
    [CrossRef]
  16. C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004).
    [CrossRef]
  17. S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
    [CrossRef]
  18. D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009).
    [CrossRef]
  19. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt.43(5), 1063–1071 (2004).
    [CrossRef] [PubMed]
  20. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  21. R. Bäumner, L. Bonacina, J. Enderlein, J. Extermann, T. Fricke-Begemann, G. Marowsky, and J.-P. Wolf, “Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles,” Opt. Express18(22), 23218–23225 (2010).
    [CrossRef] [PubMed]
  22. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express17(8), 5987–5997 (2009).
    [CrossRef] [PubMed]
  23. R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
    [CrossRef] [PubMed]
  24. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed. Engl.48(18), 3244–3266 (2009).
    [CrossRef] [PubMed]
  25. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
    [CrossRef] [PubMed]
  26. C. Soeller and M. B. Cannell, “Construction of a two-photon microscope and optimisation of illumination pulse duration,” Pflügers Arch. Eur. J. Appl. Physiol.432, 555–561 (1996).
  27. G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
    [CrossRef]
  28. A. M. Larson and A. T. Yeh, “Ex vivo characterization of sub-10-fs pulses,” Opt. Lett.31(11), 1681–1683 (2006).
    [CrossRef] [PubMed]
  29. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003).
    [CrossRef] [PubMed]
  30. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008).
    [CrossRef]
  31. P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
    [CrossRef] [PubMed]
  32. D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt.6(1), 6–13 (2001).
    [CrossRef] [PubMed]
  33. L. S. Natrajan, A. Toulmin, A. Chew, and S. W. Magennis, “Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(III) and Ru(II),” Dalton Trans.39(45), 10837–10846 (2010).
    [CrossRef] [PubMed]
  34. R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009).
    [CrossRef] [PubMed]
  35. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
    [CrossRef] [PubMed]
  36. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
    [CrossRef] [PubMed]
  37. T. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern.SMC-8, 630–632 (1978).
  38. V. V. Lozovoy and M. Dantus, “When shorter is better,” in “Commercial and biomedical applications of ultrafast lasers IX,” Proc. SPIE7203, 72030Y, 72030Y-7 (2009).
    [CrossRef]
  39. W. Wang, Y. Liu, P. Xi, and Q. Ren, “Origin and effect of high-order dispersion in ultrashort pulse multiphoton microscopy in the 10 fs regime,” Appl. Opt.49(35), 6703–6709 (2010).
    [CrossRef] [PubMed]
  40. M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998).
    [CrossRef] [PubMed]
  41. Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” Proc. SPIE7183, 71830W, 71830W-6 (2009).
    [CrossRef]
  42. S. Weiss, “Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy,” Nat. Struct. Biol.7(9), 724–729 (2000).
    [CrossRef] [PubMed]
  43. K.-C. Chiu, C.-Y. Lin, C. Y. Dong, and S.-J. Chen, “Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging,” Opt. Express19(6), 5386–5396 (2011).
    [CrossRef] [PubMed]
  44. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009).
    [CrossRef] [PubMed]
  45. D. Brinks, R. Hildner, F. D. Stefani, and N. F. van Hulst, “Beating spatio-temporal coupling: implications for pulse shaping and coherent control experiments,” Opt. Express19(27), 26486–26499 (2011).
    [CrossRef] [PubMed]

2011

P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011).
[CrossRef] [PubMed]

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

K.-C. Chiu, C.-Y. Lin, C. Y. Dong, and S.-J. Chen, “Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging,” Opt. Express19(6), 5386–5396 (2011).
[CrossRef] [PubMed]

D. Brinks, R. Hildner, F. D. Stefani, and N. F. van Hulst, “Beating spatio-temporal coupling: implications for pulse shaping and coherent control experiments,” Opt. Express19(27), 26486–26499 (2011).
[CrossRef] [PubMed]

2010

2009

R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009).
[CrossRef] [PubMed]

V. V. Lozovoy and M. Dantus, “When shorter is better,” in “Commercial and biomedical applications of ultrafast lasers IX,” Proc. SPIE7203, 72030Y, 72030Y-7 (2009).
[CrossRef]

Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” Proc. SPIE7183, 71830W, 71830W-6 (2009).
[CrossRef]

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed. Engl.48(18), 3244–3266 (2009).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009).
[CrossRef]

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009).
[CrossRef] [PubMed]

R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express17(8), 5987–5997 (2009).
[CrossRef] [PubMed]

2008

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008).
[CrossRef]

O. Hollmann, R. Steitz, and C. Czeslik, “Structure and dynamics of α-lactalbumin adsorbed at a charged brush interface,” Phys. Chem. Chem. Phys.10(10), 1448–1456 (2008).
[CrossRef] [PubMed]

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods5(6), 507–516 (2008).
[CrossRef] [PubMed]

C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
[CrossRef] [PubMed]

D. Axelrod, “Chapter 7: Total internal reflection fluorescence microscopy,” Methods Cell Biol.89, 169–221 (2008).
[CrossRef] [PubMed]

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
[CrossRef] [PubMed]

2007

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

2006

2005

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D38(10), R185–R197 (2005).
[CrossRef]

S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

2004

C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004).
[CrossRef]

J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt.43(5), 1063–1071 (2004).
[CrossRef] [PubMed]

2003

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003).
[CrossRef] [PubMed]

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J.32(7), 635–643 (2003).
[CrossRef] [PubMed]

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2001

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt.6(1), 6–13 (2001).
[CrossRef] [PubMed]

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

2000

S. Weiss, “Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy,” Nat. Struct. Biol.7(9), 724–729 (2000).
[CrossRef] [PubMed]

1998

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998).
[CrossRef] [PubMed]

1997

I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Two-photon excitation by the evanescent wave from total internal reflection,” Anal. Biochem.247(1), 69–76 (1997).
[CrossRef] [PubMed]

1996

C. Soeller and M. B. Cannell, “Construction of a two-photon microscope and optimisation of illumination pulse duration,” Pflügers Arch. Eur. J. Appl. Physiol.432, 555–561 (1996).

H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett.21(22), 1848–1850 (1996).
[CrossRef] [PubMed]

1993

Z. Huang and N. L. Thompson, “Theory for two-photon excitation in pattern photobleaching with evanescent illumination,” Biophys. Chem.47(3), 241–249 (1993).
[CrossRef] [PubMed]

1983

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc.129(1), 19–28 (1983).
[CrossRef] [PubMed]

1978

T. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern.SMC-8, 630–632 (1978).

Abankwa, D.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Allner, S.

P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011).
[CrossRef] [PubMed]

Andegeko, Y.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” Proc. SPIE7183, 71830W, 71830W-6 (2009).
[CrossRef]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008).
[CrossRef]

Anderson, H. L.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed. Engl.48(18), 3244–3266 (2009).
[CrossRef] [PubMed]

Assion, A.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Axelrod, D.

D. Axelrod, “Chapter 7: Total internal reflection fluorescence microscopy,” Methods Cell Biol.89, 169–221 (2008).
[CrossRef] [PubMed]

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt.6(1), 6–13 (2001).
[CrossRef] [PubMed]

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc.129(1), 19–28 (1983).
[CrossRef] [PubMed]

Badenes, G.

S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

Bader, M. A.

S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004).
[CrossRef]

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

Bastiani, M.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Bäumner, R.

Bonacina, L.

Bopp, M. A.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

Brakenhoff, G. J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998).
[CrossRef] [PubMed]

Brinks, D.

Buil, S.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
[CrossRef] [PubMed]

Burghardt, T. P.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc.129(1), 19–28 (1983).
[CrossRef] [PubMed]

Butler-Browne, G.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Calvard, S.

T. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern.SMC-8, 630–632 (1978).

Cannell, M. B.

C. Soeller and M. B. Cannell, “Construction of a two-photon microscope and optimisation of illumination pulse duration,” Pflügers Arch. Eur. J. Appl. Physiol.432, 555–561 (1996).

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Chang, C.-H.

Chang, N.-S.

Chen, S.-J.

Chew, A.

L. S. Natrajan, A. Toulmin, A. Chew, and S. W. Magennis, “Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(III) and Ru(II),” Dalton Trans.39(45), 10837–10846 (2010).
[CrossRef] [PubMed]

Chiu, K.-C.

Cho, K.-C.

Choi, C. K.

C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
[CrossRef] [PubMed]

Chon, J. W. M.

Collins, H. A.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed. Engl.48(18), 3244–3266 (2009).
[CrossRef] [PubMed]

Czeslik, C.

O. Hollmann, R. Steitz, and C. Czeslik, “Structure and dynamics of α-lactalbumin adsorbed at a charged brush interface,” Phys. Chem. Chem. Phys.10(10), 1448–1456 (2008).
[CrossRef] [PubMed]

Dantus, M.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

V. V. Lozovoy and M. Dantus, “When shorter is better,” in “Commercial and biomedical applications of ultrafast lasers IX,” Proc. SPIE7203, 72030Y, 72030Y-7 (2009).
[CrossRef]

Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” Proc. SPIE7183, 71830W, 71830W-6 (2009).
[CrossRef]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003).
[CrossRef] [PubMed]

Dela Cruz, J. M.

Denning, R. G.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed. Engl.48(18), 3244–3266 (2009).
[CrossRef] [PubMed]

Dexlin, L.

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

Dibas, M. I.

R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009).
[CrossRef] [PubMed]

Dittrich, P. S.

P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011).
[CrossRef] [PubMed]

Dong, C. Y.

Dougherty, D. A.

R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009).
[CrossRef] [PubMed]

Drexler, W.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Dubertret, B.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
[CrossRef] [PubMed]

Duveneck, G. L.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

Ehrat, M.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

Enderlein, J.

Extermann, J.

Eyer, K.

P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011).
[CrossRef] [PubMed]

Fricke-Begemann, T.

R. Bäumner, L. Bonacina, J. Enderlein, J. Extermann, T. Fricke-Begemann, G. Marowsky, and J.-P. Wolf, “Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles,” Opt. Express18(22), 23218–23225 (2010).
[CrossRef] [PubMed]

C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004).
[CrossRef]

Fruhwirth, G.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Golding, I.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Gonçalves, J. T.

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J.32(7), 635–643 (2003).
[CrossRef] [PubMed]

Gonnord, P.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Gryczynski, I.

I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Two-photon excitation by the evanescent wave from total internal reflection,” Anal. Biochem.247(1), 69–76 (1997).
[CrossRef] [PubMed]

Gryczynski, Z.

I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Two-photon excitation by the evanescent wave from total internal reflection,” Anal. Biochem.247(1), 69–76 (1997).
[CrossRef] [PubMed]

Gu, M.

Gunnarsson, A.

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

Ha, T.

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods5(6), 507–516 (2008).
[CrossRef] [PubMed]

Haiml, M.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

He, G. S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

He, R.-Y.

Hermier, J.-P.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
[CrossRef] [PubMed]

Hildner, R.

Hohng, S.

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods5(6), 507–516 (2008).
[CrossRef] [PubMed]

Hollmann, O.

O. Hollmann, R. Steitz, and C. Czeslik, “Structure and dynamics of α-lactalbumin adsorbed at a charged brush interface,” Phys. Chem. Chem. Phys.10(10), 1448–1456 (2008).
[CrossRef] [PubMed]

Höök, F.

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

Horwitz, A. R.

C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
[CrossRef] [PubMed]

Huang, Z.

Z. Huang and N. L. Thompson, “Theory for two-photon excitation in pattern photobleaching with evanescent illumination,” Biophys. Chem.47(3), 241–249 (1993).
[CrossRef] [PubMed]

Isemann, A.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Ivanov, D.

D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009).
[CrossRef]

Johannes, L.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Jönsson, P.

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

Kano, H.

Kappel, C.

C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004).
[CrossRef]

Kawata, S.

Keller, U.

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

Kempe, M.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Knight, A. E.

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003).
[CrossRef] [PubMed]

Köster, D.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Kuhn, P.

P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011).
[CrossRef] [PubMed]

Lakowicz, J. R.

I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Two-photon excitation by the evanescent wave from total internal reflection,” Anal. Biochem.247(1), 69–76 (1997).
[CrossRef] [PubMed]

Lamaze, C.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Larson, A. M.

Lasser, T.

D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009).
[CrossRef]

Lester, H. A.

R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009).
[CrossRef] [PubMed]

Leutenegger, M.

D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009).
[CrossRef]

Lin, C.-Y.

Liu, Y.

Lombardi, D.

P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011).
[CrossRef] [PubMed]

Lopes, W.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Lovozoy, V. V.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

Lozovoy, V. V.

V. V. Lozovoy and M. Dantus, “When shorter is better,” in “Commercial and biomedical applications of ultrafast lasers IX,” Proc. SPIE7203, 72030Y, 72030Y-7 (2009).
[CrossRef]

Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” Proc. SPIE7183, 71830W, 71830W-6 (2009).
[CrossRef]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003).
[CrossRef] [PubMed]

Magennis, S. W.

L. S. Natrajan, A. Toulmin, A. Chew, and S. W. Magennis, “Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(III) and Ru(II),” Dalton Trans.39(45), 10837–10846 (2010).
[CrossRef] [PubMed]

Mahler, B.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
[CrossRef] [PubMed]

Märki, I.

D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009).
[CrossRef]

Marowsky, G.

R. Bäumner, L. Bonacina, J. Enderlein, J. Extermann, T. Fricke-Begemann, G. Marowsky, and J.-P. Wolf, “Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles,” Opt. Express18(22), 23218–23225 (2010).
[CrossRef] [PubMed]

S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004).
[CrossRef]

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

Mashanov, G. I.

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003).
[CrossRef] [PubMed]

Mogilner, A.

C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
[CrossRef] [PubMed]

Molloy, J. E.

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003).
[CrossRef] [PubMed]

Morone, N.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Müller, M.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998).
[CrossRef] [PubMed]

N, A. T. K.

S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Nassoy, P.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Natrajan, L. S.

L. S. Natrajan, A. Toulmin, A. Chew, and S. W. Magennis, “Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(III) and Ru(II),” Dalton Trans.39(45), 10837–10846 (2010).
[CrossRef] [PubMed]

Ng, T.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Oheim, M.

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D38(10), R185–R197 (2005).
[CrossRef]

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J.32(7), 635–643 (2003).
[CrossRef] [PubMed]

Pantoja, R.

R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009).
[CrossRef] [PubMed]

Parton, R. G.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Pastirk, I.

Pawlicki, M.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed. Engl.48(18), 3244–3266 (2009).
[CrossRef] [PubMed]

Peckham, M.

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003).
[CrossRef] [PubMed]

Pervak, W.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Pestov, D.

Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” Proc. SPIE7183, 71830W, 71830W-6 (2009).
[CrossRef]

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

Považay, B.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Prasad, P. N.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Quelin, X.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
[CrossRef] [PubMed]

Raposo, G.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Ren, Q.

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Ridler, T.

T. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern.SMC-8, 630–632 (1978).

Rodriguez, E. A.

R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009).
[CrossRef] [PubMed]

Rothenberg, E.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Roy, R.

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods5(6), 507–516 (2008).
[CrossRef] [PubMed]

Ruez, R.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Schapper, F.

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D38(10), R185–R197 (2005).
[CrossRef]

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J.32(7), 635–643 (2003).
[CrossRef] [PubMed]

Selle, A.

S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004).
[CrossRef]

Selvin, P. R.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Sens, P.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Shcheslavskiy, V.

D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009).
[CrossRef]

Silberberg, Y.

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009).
[CrossRef] [PubMed]

Simon, U.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998).
[CrossRef] [PubMed]

Simonson, P. D.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Sinha, B.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Soeller, C.

C. Soeller and M. B. Cannell, “Construction of a two-photon microscope and optimisation of illumination pulse duration,” Pflügers Arch. Eur. J. Appl. Physiol.432, 555–561 (1996).

Soria, S.

S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

Spinicelli, P.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
[CrossRef] [PubMed]

Squier, J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998).
[CrossRef] [PubMed]

Stan, R. V.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Stefani, F. D.

Steitz, R.

O. Hollmann, R. Steitz, and C. Czeslik, “Structure and dynamics of α-lactalbumin adsorbed at a charged brush interface,” Phys. Chem. Chem. Phys.10(10), 1448–1456 (2008).
[CrossRef] [PubMed]

Stingl, A.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Su, Y.-D.

Svedhem, S.

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

Tacon, D.

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003).
[CrossRef] [PubMed]

Tan, L.-S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Tempea, G.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Thompson, N. L.

Z. Huang and N. L. Thompson, “Theory for two-photon excitation in pattern photobleaching with evanescent illumination,” Biophys. Chem.47(3), 241–249 (1993).
[CrossRef] [PubMed]

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc.129(1), 19–28 (1983).
[CrossRef] [PubMed]

Toulmin, A.

L. S. Natrajan, A. Toulmin, A. Chew, and S. W. Magennis, “Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(III) and Ru(II),” Dalton Trans.39(45), 10837–10846 (2010).
[CrossRef] [PubMed]

van Hulst, N. F.

Vedie, B.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Vicente-Manzanares, M.

C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
[CrossRef] [PubMed]

Wallin, P.

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

Walowicz, K. A.

Wang, W.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Weisel, L. R.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008).
[CrossRef]

Weiss, S.

S. Weiss, “Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy,” Nat. Struct. Biol.7(9), 724–729 (2000).
[CrossRef] [PubMed]

Whitmore, L. A.

C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wingren, C.

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

Wolf, J.-P.

Wolleschensky, R.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998).
[CrossRef] [PubMed]

Xi, P.

W. Wang, Y. Liu, P. Xi, and Q. Ren, “Origin and effect of high-order dispersion in ultrashort pulse multiphoton microscopy in the 10 fs regime,” Appl. Opt.49(35), 6703–6709 (2010).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008).
[CrossRef]

Ye, F.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Yeh, A. T.

Zareno, J.

C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
[CrossRef] [PubMed]

Zhang, R.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Zheng, Q.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Anal. Biochem.

I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Two-photon excitation by the evanescent wave from total internal reflection,” Anal. Biochem.247(1), 69–76 (1997).
[CrossRef] [PubMed]

Anal. Chem.

P. Kuhn, K. Eyer, S. Allner, D. Lombardi, and P. S. Dittrich, “A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines,” Anal. Chem.83(23), 8877–8885 (2011).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed. Engl.48(18), 3244–3266 (2009).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M. A. Bader, G. Marowsky, and S. Soria, “Evanescent field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B73(8), 869–871 (2001).
[CrossRef]

C. Kappel, A. Selle, T. Fricke-Begemann, M. A. Bader, and G. Marowsky, “Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures,” Appl. Phys. B79(5), 531–534 (2004).
[CrossRef]

Appl. Phys. Lett.

S. Soria, A. T. K. N, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

D. Ivanov, V. Shcheslavskiy, I. Märki, M. Leutenegger, and T. Lasser, “High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy,” Appl. Phys. Lett.94(8), 083902 (2009).
[CrossRef]

Biophys. Chem.

Z. Huang and N. L. Thompson, “Theory for two-photon excitation in pattern photobleaching with evanescent illumination,” Biophys. Chem.47(3), 241–249 (1993).
[CrossRef] [PubMed]

Biophys. J.

R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, and H. A. Lester, “Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors,” Biophys. J.96(1), 226–237 (2009).
[CrossRef] [PubMed]

Cell

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy, “Cells respond to mechanical stress by rapid disassembly of caveolae,” Cell144(3), 402–413 (2011).
[CrossRef] [PubMed]

Chem. Rev.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Dalton Trans.

L. S. Natrajan, A. Toulmin, A. Chew, and S. W. Magennis, “Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(III) and Ru(II),” Dalton Trans.39(45), 10837–10846 (2010).
[CrossRef] [PubMed]

Eur. Biophys. J.

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J.32(7), 635–643 (2003).
[CrossRef] [PubMed]

Eur. J. Appl. Physiol.

C. Soeller and M. B. Cannell, “Construction of a two-photon microscope and optimisation of illumination pulse duration,” Pflügers Arch. Eur. J. Appl. Physiol.432, 555–561 (1996).

IEEE Trans. Syst. Man Cybern.

T. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst. Man Cybern.SMC-8, 630–632 (1978).

J. Am. Chem. Soc.

A. Gunnarsson, L. Dexlin, P. Wallin, S. Svedhem, P. Jönsson, C. Wingren, and F. Höök, “Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events,” J. Am. Chem. Soc.133(38), 14852–14855 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt.6(1), 6–13 (2001).
[CrossRef] [PubMed]

J. Microsc.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc.191(2), 141–150 (1998).
[CrossRef] [PubMed]

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc.129(1), 19–28 (1983).
[CrossRef] [PubMed]

J. Phys. D

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D38(10), R185–R197 (2005).
[CrossRef]

Methods

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, “Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy,” Methods29(2), 142–152 (2003).
[CrossRef] [PubMed]

Methods Cell Biol.

D. Axelrod, “Chapter 7: Total internal reflection fluorescence microscopy,” Methods Cell Biol.89, 169–221 (2008).
[CrossRef] [PubMed]

Nano Lett.

R. Zhang, E. Rothenberg, G. Fruhwirth, P. D. Simonson, F. Ye, I. Golding, T. Ng, W. Lopes, and P. R. Selvin, “Two-photon 3D FIONA of individual quantum dots in an aqueous environment,” Nano Lett.11(10), 4074–4078 (2011).
[CrossRef] [PubMed]

Nat. Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nat. Cell Biol.

C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz, “Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner,” Nat. Cell Biol.10(9), 1039–1050 (2008).
[CrossRef] [PubMed]

Nat. Mater.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater.7(8), 659–664 (2008).
[CrossRef] [PubMed]

Nat. Methods

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods5(6), 507–516 (2008).
[CrossRef] [PubMed]

Nat. Struct. Biol.

S. Weiss, “Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy,” Nat. Struct. Biol.7(9), 724–729 (2000).
[CrossRef] [PubMed]

Opt. Commun.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun.281(7), 1841–1849 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

O. Hollmann, R. Steitz, and C. Czeslik, “Structure and dynamics of α-lactalbumin adsorbed at a charged brush interface,” Phys. Chem. Chem. Phys.10(10), 1448–1456 (2008).
[CrossRef] [PubMed]

Proc. SPIE

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, “Undistorted delivery of sub-15-fs pulses via high-numerical-aperture microscope objectives,” Proc. SPIE6442, 64420P, 64420P-5 (2007).
[CrossRef]

Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, “Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation,” Proc. SPIE7183, 71830W, 71830W-6 (2009).
[CrossRef]

V. V. Lozovoy and M. Dantus, “When shorter is better,” in “Commercial and biomedical applications of ultrafast lasers IX,” Proc. SPIE7203, 72030Y, 72030Y-7 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the objective-type TIRF microscope with 1P and 2P excitation. L1-L4: lenses, NDM1-2: negative dispersion mirrors, BE: beam expander, BD: beam dump, W: wedge, P: prism, ND: neutral density filters CM: concave mirror, SLM: dual (reflective) spatial light modulator, BFP: back focal plane, Obj: microscope objective, M1-4: protected silver mirrors, M5-M6: dielectric mirrors, DC1-2: dichroic filter, F1-2: bandpass filter (**F2 path blocked), cyan/magenta/red/blue lines: laser light, yellow/green/red lines: fluorescence. See text for details.

Fig. 2
Fig. 2

Variation in fluorescence from Q-dots in “off-axis” TIRF configuration upon applying varying amounts of compensation “on axis.” See text for details.

Fig. 3
Fig. 3

Absorption and ensemble fluorescence spectra of Q-dots. The inset shows that exci-tation at 800 nm obeys a power squared law, as expected for a 2P process.

Fig. 4
Fig. 4

Shaped versus uncompensated 2P TIRF. Fluorescence images show the same single and aggregated CdSe/ZnS Q-dots evaporated onto a clean surface before and after shaping. Dashed white circles indicate single particles, solid white circles indicate nanoaggregates. A single frame from each data set is shown. (a) 2P uncompensated excited sample, integration time of 300 s. (b) 2P shaped excited sample, integration time of 300 s. (c) time traces of the single particles indicated in 4(a) and 4(b) measured with 1P excitation (integration time 33 ms). Field striations are observable in the FOV of 4(b).

Fig. 5
Fig. 5

Fluorescence from immobilised CdSe/ZnS Q-dot nanoaggregates observed by 2P TIRF microscopy. (a)-(b) 2D and 3D surface intensity plots (photoelectrons measured) where each frame is the average of 500 exposures at 10 Hz. The intensity axes are scaled to a dynamic range of 0-16 cts to provide the best visual contrast, and facilitate comparison. The plots are also normalised to the same incident excitation power of 120 mW. The imaged area is 42 by 47 μm. (c) Excitation pulse-widths for applied phase compensation mask measured in epifluorescence configuration, estimated at 250 fs for uncompensated pulses, and 15 fs for shaped pulses, assuming Gaussian profiles. Inset: residual phase for the TL pulse (d) SHG spectrum measured in epifluorescence configuration.

Tables (1)

Tables Icon

Table 1 Comparison of Signal, Background, and SBR for Compensated and Uncompensated Multiphoton TIRF Images of Nanoaggregates and Single Quantum Dots*

Metrics