Abstract

In this paper, we investigate the effect of non-uniformities (enlargement of current passage, non-equal surface current densities, etc.) in axial as well as transverse directions of a porous silicon Fabry-Perot (FP) cavity as well as loss nature of bulk silicon on spectral properties of this cavity, even that cavity is created with an anisotropic etching process. Without correct and comprehensive characterization of such cavities by incorporating these non-uniformities and inherent lossy nature of a cavity, detection and identification of biological and chemical molecules by that cavity may yield unpredictable and misleading results. From our simulations, we note the following two key points. First, effects of the refractive index and the thickness of microcavity region of a lossless or lossy FP cavity on resonance wavelength is more prevailing than those of first and last layers. Second, the effect of some small loss inside the FP cavity is not detectable by the measurement of resonance wavelength whereas the same influence is noticeable by the measurement of reflectivity. We carried out some measurements from two different regions on the fabricated cavities to validate our simulation results. From a practical point of view in correct detection and/or identification of lossy biological or chemical vapor by FP cavities, we conclude that not only the measurement of resonance wavelength as well as its shift but also the reflectivity value at the resonance wavelength or some specific wavelengths should be utilized.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Q. Lu and X. S. Zhao, Nanoporous Materials: Science and Engineering (Imperial College Press, 2005).
  2. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997).
    [CrossRef]
  3. K. A. Kilian, T. Bocking, and J. J. Gooding, “The importance of surface chemistry in nanostructured materials: lessons from mesoporous silicon photonic biosensors,” Chem. Commun. (Camb.) 630, 630–640 (2009).
    [CrossRef]
  4. I. Suarez, V. Chirvony, D. Hill, and J. Martinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostruct.: Fundam. Appl. 9, 304–311 (2011).
  5. V. Agarwal, M. E. Mora-Ramos, and B. Alvarado-Tenorio, “Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures,” Photon. Nanostruct.: Fundam. Appl. 7(2), 63–68 (2009).
    [CrossRef]
  6. C. Jamois, C. Li, R. Orobtchouk, and T. Benyattou, “Slow Bloch surface wave devices on porous silicon for sensing applications,” Photon. Nanostruct.: Fundam. Appl. 8(2), 72–77 (2010).
    [CrossRef]
  7. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
    [CrossRef]
  8. H. Ouyang, M. Christophersen, and P. M. Fauchet, “Enhanced control of porous silicon morphology from macropore to mesopore formation,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1396–1401 (2005).
    [CrossRef]
  9. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86(4), 1781–2367 (1999).
    [CrossRef]
  10. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
    [CrossRef] [PubMed]
  11. E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Porous silicon-based rugate filters,” Appl. Opt. 44(26), 5415–5421 (2005).
    [CrossRef] [PubMed]
  12. K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
    [CrossRef]
  13. S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009).
    [CrossRef] [PubMed]
  14. T. Karacali, M. Alanyalioglu, and H. Efeoglu, “Single and double Fabry-Perot structure based on porous silicon for chemical sensors,” IEEE Sens. J. 9(12), 1667–1672 (2009).
    [CrossRef]
  15. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
    [CrossRef]
  16. H. Yang and P. Jiang, “Macroporous photonic crystal-based vapor detectors created by doctor blade coating,” Appl. Phys. Lett. 98(1), 011104 (2011).
    [CrossRef]
  17. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Perot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
    [CrossRef] [PubMed]
  18. J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
    [CrossRef] [PubMed]
  19. K. Reddy and X. Fan, “Self-referenced composite Fabry-Perot cavity vapor sensors,” Opt. Express 20(2), 966–971 (2012).
    [CrossRef] [PubMed]
  20. D. M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2005).
  21. P. Schmuki, D. J. Lockwood, Y. H. Ogata, M. Seo, and H. S. Isaacs, eds., Pits and Pores II (Formation, Properties, and Significance for Advanced Materials) (Electrochemical Society, 2004).
  22. A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
    [CrossRef] [PubMed]
  23. B. Cakmak, T. Karacali, and S. Yu, “Theoretical investigation of chirped mirrors in semiconductor lasers,” Appl. Phys. B 81(1), 33–37 (2005).
    [CrossRef]
  24. J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69(19), 2772–2775 (1992).
    [CrossRef] [PubMed]
  25. P. Markos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(3), 033401 (2001).
    [CrossRef]
  26. P. Markos and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036622 (2002).
    [CrossRef] [PubMed]
  27. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, Hoboken, NJ, 1989).
  28. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von hererogenen substanzen,” Ann. Phys. 24, 636–679 (1935).
    [CrossRef]
  29. http://www.virginiasemi.com
  30. U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech. 57(2), 471–477 (2009).
    [CrossRef]
  31. U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56(9), 2129–2135 (2008).
    [CrossRef]
  32. A. Papoulis, Probability, Radom Variables and Stochastic Processes (Mcgraw-Hill, NY, 2002).

2012

2011

I. Suarez, V. Chirvony, D. Hill, and J. Martinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostruct.: Fundam. Appl. 9, 304–311 (2011).

H. Yang and P. Jiang, “Macroporous photonic crystal-based vapor detectors created by doctor blade coating,” Appl. Phys. Lett. 98(1), 011104 (2011).
[CrossRef]

2010

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

C. Jamois, C. Li, R. Orobtchouk, and T. Benyattou, “Slow Bloch surface wave devices on porous silicon for sensing applications,” Photon. Nanostruct.: Fundam. Appl. 8(2), 72–77 (2010).
[CrossRef]

2009

V. Agarwal, M. E. Mora-Ramos, and B. Alvarado-Tenorio, “Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures,” Photon. Nanostruct.: Fundam. Appl. 7(2), 63–68 (2009).
[CrossRef]

K. A. Kilian, T. Bocking, and J. J. Gooding, “The importance of surface chemistry in nanostructured materials: lessons from mesoporous silicon photonic biosensors,” Chem. Commun. (Camb.) 630, 630–640 (2009).
[CrossRef]

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Perot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009).
[CrossRef] [PubMed]

T. Karacali, M. Alanyalioglu, and H. Efeoglu, “Single and double Fabry-Perot structure based on porous silicon for chemical sensors,” IEEE Sens. J. 9(12), 1667–1672 (2009).
[CrossRef]

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech. 57(2), 471–477 (2009).
[CrossRef]

2008

U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56(9), 2129–2135 (2008).
[CrossRef]

2006

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

2005

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Porous silicon-based rugate filters,” Appl. Opt. 44(26), 5415–5421 (2005).
[CrossRef] [PubMed]

H. Ouyang, M. Christophersen, and P. M. Fauchet, “Enhanced control of porous silicon morphology from macropore to mesopore formation,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1396–1401 (2005).
[CrossRef]

B. Cakmak, T. Karacali, and S. Yu, “Theoretical investigation of chirped mirrors in semiconductor lasers,” Appl. Phys. B 81(1), 33–37 (2005).
[CrossRef]

2002

P. Markos and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036622 (2002).
[CrossRef] [PubMed]

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

2001

P. Markos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(3), 033401 (2001).
[CrossRef]

2000

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

1999

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86(4), 1781–2367 (1999).
[CrossRef]

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

1997

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997).
[CrossRef]

1992

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69(19), 2772–2775 (1992).
[CrossRef] [PubMed]

1935

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von hererogenen substanzen,” Ann. Phys. 24, 636–679 (1935).
[CrossRef]

Agarwal, V.

V. Agarwal, M. E. Mora-Ramos, and B. Alvarado-Tenorio, “Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures,” Photon. Nanostruct.: Fundam. Appl. 7(2), 63–68 (2009).
[CrossRef]

Alanyalioglu, M.

T. Karacali, M. Alanyalioglu, and H. Efeoglu, “Single and double Fabry-Perot structure based on porous silicon for chemical sensors,” IEEE Sens. J. 9(12), 1667–1672 (2009).
[CrossRef]

Almasri, M.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Alvarado-Tenorio, B.

V. Agarwal, M. E. Mora-Ramos, and B. Alvarado-Tenorio, “Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures,” Photon. Nanostruct.: Fundam. Appl. 7(2), 63–68 (2009).
[CrossRef]

Alvarez, S. D.

S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009).
[CrossRef] [PubMed]

Bai, M.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Benyattou, T.

C. Jamois, C. Li, R. Orobtchouk, and T. Benyattou, “Slow Bloch surface wave devices on porous silicon for sensing applications,” Photon. Nanostruct.: Fundam. Appl. 8(2), 72–77 (2010).
[CrossRef]

Bhatia, S. N.

S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009).
[CrossRef] [PubMed]

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

Bocking, T.

K. A. Kilian, T. Bocking, and J. J. Gooding, “The importance of surface chemistry in nanostructured materials: lessons from mesoporous silicon photonic biosensors,” Chem. Commun. (Camb.) 630, 630–640 (2009).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von hererogenen substanzen,” Ann. Phys. 24, 636–679 (1935).
[CrossRef]

Cakmak, B.

B. Cakmak, T. Karacali, and S. Yu, “Theoretical investigation of chirped mirrors in semiconductor lasers,” Appl. Phys. B 81(1), 33–37 (2005).
[CrossRef]

Canham, L. T.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86(4), 1781–2367 (1999).
[CrossRef]

Capuj, N. E.

Chirvony, V.

I. Suarez, V. Chirvony, D. Hill, and J. Martinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostruct.: Fundam. Appl. 9, 304–311 (2011).

Christophersen, M.

H. Ouyang, M. Christophersen, and P. M. Fauchet, “Enhanced control of porous silicon morphology from macropore to mesopore formation,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1396–1401 (2005).
[CrossRef]

Cunin, F.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

Dancil, K.-P. S.

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

Derfus, A. M.

S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009).
[CrossRef] [PubMed]

Dronov, R.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Efeoglu, H.

T. Karacali, M. Alanyalioglu, and H. Efeoglu, “Single and double Fabry-Perot structure based on porous silicon for chemical sensors,” IEEE Sens. J. 9(12), 1667–1672 (2009).
[CrossRef]

Fan, X.

K. Reddy and X. Fan, “Self-referenced composite Fabry-Perot cavity vapor sensors,” Opt. Express 20(2), 966–971 (2012).
[CrossRef] [PubMed]

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Perot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

Fauchet, P. M.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

H. Ouyang, M. Christophersen, and P. M. Fauchet, “Enhanced control of porous silicon morphology from macropore to mesopore formation,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1396–1401 (2005).
[CrossRef]

Frye-Mason, G.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Gaburro, Z.

Ghulinyan, M.

Gooding, J. J.

K. A. Kilian, T. Bocking, and J. J. Gooding, “The importance of surface chemistry in nanostructured materials: lessons from mesoporous silicon photonic biosensors,” Chem. Commun. (Camb.) 630, 630–640 (2009).
[CrossRef]

Greiner, D. P.

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

Hasar, U. C.

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech. 57(2), 471–477 (2009).
[CrossRef]

U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56(9), 2129–2135 (2008).
[CrossRef]

Hill, D.

I. Suarez, V. Chirvony, D. Hill, and J. Martinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostruct.: Fundam. Appl. 9, 304–311 (2011).

Hodges, A.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Howard, D. J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Ja, S.-J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Jamois, C.

C. Jamois, C. Li, R. Orobtchouk, and T. Benyattou, “Slow Bloch surface wave devices on porous silicon for sensing applications,” Photon. Nanostruct.: Fundam. Appl. 8(2), 72–77 (2010).
[CrossRef]

Jane, A.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Jiang, P.

H. Yang and P. Jiang, “Macroporous photonic crystal-based vapor detectors created by doctor blade coating,” Appl. Phys. Lett. 98(1), 011104 (2011).
[CrossRef]

Karacali, T.

T. Karacali, M. Alanyalioglu, and H. Efeoglu, “Single and double Fabry-Perot structure based on porous silicon for chemical sensors,” IEEE Sens. J. 9(12), 1667–1672 (2009).
[CrossRef]

B. Cakmak, T. Karacali, and S. Yu, “Theoretical investigation of chirped mirrors in semiconductor lasers,” Appl. Phys. B 81(1), 33–37 (2005).
[CrossRef]

Kilian, K. A.

K. A. Kilian, T. Bocking, and J. J. Gooding, “The importance of surface chemistry in nanostructured materials: lessons from mesoporous silicon photonic biosensors,” Chem. Commun. (Camb.) 630, 630–640 (2009).
[CrossRef]

Koh, J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

Li, C.

C. Jamois, C. Li, R. Orobtchouk, and T. Benyattou, “Slow Bloch surface wave devices on porous silicon for sensing applications,” Photon. Nanostruct.: Fundam. Appl. 8(2), 72–77 (2010).
[CrossRef]

Li, Y. Y.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

Link, J. R.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

Liu, J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Perot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

Lorenzo, E.

MacKinnon, A.

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69(19), 2772–2775 (1992).
[CrossRef] [PubMed]

Markos, P.

P. Markos and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036622 (2002).
[CrossRef] [PubMed]

P. Markos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(3), 033401 (2001).
[CrossRef]

Martinez-Pastor, J.

I. Suarez, V. Chirvony, D. Hill, and J. Martinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostruct.: Fundam. Appl. 9, 304–311 (2011).

Mora-Ramos, M. E.

V. Agarwal, M. E. Mora-Ramos, and B. Alvarado-Tenorio, “Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures,” Photon. Nanostruct.: Fundam. Appl. 7(2), 63–68 (2009).
[CrossRef]

Mulloni, V.

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

Navarro-Urrios, D.

Orobtchouk, R.

C. Jamois, C. Li, R. Orobtchouk, and T. Benyattou, “Slow Bloch surface wave devices on porous silicon for sensing applications,” Photon. Nanostruct.: Fundam. Appl. 8(2), 72–77 (2010).
[CrossRef]

Oton, C. J.

Ouyang, H.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

H. Ouyang, M. Christophersen, and P. M. Fauchet, “Enhanced control of porous silicon morphology from macropore to mesopore formation,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1396–1401 (2005).
[CrossRef]

Pavesi, L.

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Porous silicon-based rugate filters,” Appl. Opt. 44(26), 5415–5421 (2005).
[CrossRef] [PubMed]

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997).
[CrossRef]

Pendry, J. B.

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69(19), 2772–2775 (1992).
[CrossRef] [PubMed]

Reddy, K.

Russell, P. St. J.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86(4), 1781–2367 (1999).
[CrossRef]

Sailor, M. J.

S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009).
[CrossRef] [PubMed]

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

Schmedake, T. A.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

Schwartz, M. P.

S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009).
[CrossRef] [PubMed]

Snow, P. A.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86(4), 1781–2367 (1999).
[CrossRef]

Soukoulis, C. M.

P. Markos and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036622 (2002).
[CrossRef] [PubMed]

P. Markos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(3), 033401 (2001).
[CrossRef]

Squire, E. K.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86(4), 1781–2367 (1999).
[CrossRef]

Striemer, C. C.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Suarez, I.

I. Suarez, V. Chirvony, D. Hill, and J. Martinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostruct.: Fundam. Appl. 9, 304–311 (2011).

Sun, Y.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Perot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

Taub, H.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Thompson, A. K.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Voelcker, N. H.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Wang, S.-K.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Westgate, C. R.

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech. 57(2), 471–477 (2009).
[CrossRef]

Yang, H.

H. Yang and P. Jiang, “Macroporous photonic crystal-based vapor detectors created by doctor blade coating,” Appl. Phys. Lett. 98(1), 011104 (2011).
[CrossRef]

Yu, S.

B. Cakmak, T. Karacali, and S. Yu, “Theoretical investigation of chirped mirrors in semiconductor lasers,” Appl. Phys. B 81(1), 33–37 (2005).
[CrossRef]

Anal. Chem.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Ann. Phys.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von hererogenen substanzen,” Ann. Phys. 24, 636–679 (1935).
[CrossRef]

Appl. Opt.

Appl. Phys. B

B. Cakmak, T. Karacali, and S. Yu, “Theoretical investigation of chirped mirrors in semiconductor lasers,” Appl. Phys. B 81(1), 33–37 (2005).
[CrossRef]

Appl. Phys. Lett.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

H. Yang and P. Jiang, “Macroporous photonic crystal-based vapor detectors created by doctor blade coating,” Appl. Phys. Lett. 98(1), 011104 (2011).
[CrossRef]

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

Biomaterials

S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009).
[CrossRef] [PubMed]

Chem. Commun. (Camb.)

K. A. Kilian, T. Bocking, and J. J. Gooding, “The importance of surface chemistry in nanostructured materials: lessons from mesoporous silicon photonic biosensors,” Chem. Commun. (Camb.) 630, 630–640 (2009).
[CrossRef]

IEEE Sens. J.

T. Karacali, M. Alanyalioglu, and H. Efeoglu, “Single and double Fabry-Perot structure based on porous silicon for chemical sensors,” IEEE Sens. J. 9(12), 1667–1672 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech. 57(2), 471–477 (2009).
[CrossRef]

U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56(9), 2129–2135 (2008).
[CrossRef]

J. Am. Chem. Soc.

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

J. Appl. Phys.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86(4), 1781–2367 (1999).
[CrossRef]

Nat. Mater.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002).
[CrossRef] [PubMed]

Opt. Express

Photon. Nanostruct.: Fundam. Appl.

I. Suarez, V. Chirvony, D. Hill, and J. Martinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostruct.: Fundam. Appl. 9, 304–311 (2011).

V. Agarwal, M. E. Mora-Ramos, and B. Alvarado-Tenorio, “Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures,” Photon. Nanostruct.: Fundam. Appl. 7(2), 63–68 (2009).
[CrossRef]

C. Jamois, C. Li, R. Orobtchouk, and T. Benyattou, “Slow Bloch surface wave devices on porous silicon for sensing applications,” Photon. Nanostruct.: Fundam. Appl. 8(2), 72–77 (2010).
[CrossRef]

Phys. Rev. B

P. Markos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(3), 033401 (2001).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

P. Markos and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036622 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69(19), 2772–2775 (1992).
[CrossRef] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci.

H. Ouyang, M. Christophersen, and P. M. Fauchet, “Enhanced control of porous silicon morphology from macropore to mesopore formation,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1396–1401 (2005).
[CrossRef]

Riv. Nuovo Cim.

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997).
[CrossRef]

Trends Biotechnol.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Other

A. Papoulis, Probability, Radom Variables and Stochastic Processes (Mcgraw-Hill, NY, 2002).

http://www.virginiasemi.com

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, Hoboken, NJ, 1989).

D. M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2005).

P. Schmuki, D. J. Lockwood, Y. H. Ogata, M. Seo, and H. S. Isaacs, eds., Pits and Pores II (Formation, Properties, and Significance for Advanced Materials) (Electrochemical Society, 2004).

G. Q. Lu and X. S. Zhao, Nanoporous Materials: Science and Engineering (Imperial College Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) The refractive index distribution versus depth and (b) small-scale SEM image of one of our fabricated FP cavities with a total of 40 layers ( n h =2.50 , n l =1.75 , d h = λ 0 / ( 4 n h ) , d l = λ 0 / ( 4 n l ) , and λ 0 1456 nm).

Fig. 2
Fig. 2

Dependence of (a) n Si and (b) κ Si of silicon versus operating wavelength.

Fig. 3
Fig. 3

Dependence of (a) the reflectivity value at λ 0 and (b) the value of λ 0 versus percentage changes in n of the first FP sample in Table 1.

Fig. 4
Fig. 4

Dependence of (a) the reflectivity value at λ 0 and (b) the value of λ 0 versus percentage change in d of the first FP sample in Table 1.

Fig. 5
Fig. 5

Whole spectrum of reflectivity when a 10% change in (a) the refractive indices and (b) the thicknesses of third and twentieth layers of the first FP sample in Table 1.

Fig. 6
Fig. 6

Dependence of (a) the reflectivity value at λ 0 and (b) the value of λ 0 versus percentage changes in n of the second FP sample ( κ h =0= κ l ) in Table 1.

Fig. 7
Fig. 7

Dependence of (a) the reflectivity value at λ 0 and (b) the value of λ 0 versus percentage changes in n of the second FP sample ( κ h =0.011 and κ h =0.006 ) in Table 1.

Fig. 8
Fig. 8

Dependence of (a) the reflectivity value at λ 0 and (b) the value of λ 0 versus percentage changes in d of the second FP sample ( κ h =0= κ l ) in Table 1.

Fig. 9
Fig. 9

Dependence of (a) the reflectivity value at λ 0 and (b) the value of λ 0 versus percentage changes in d of the second FP sample ( κ h =0.011 and κ h =0.006 ) in Table 1.

Fig. 10
Fig. 10

Whole spectrum of reflectivity when a 10% change in (a) the refractive indices and (b) the thicknesses of third and twelfth layers of the second FP sample in Table 1.

Fig. 11
Fig. 11

(a) Dependence of reflectivity spectrum for the second FP sample with different κ values, and (b) variance of the reflectance spectrum corresponding to the dependences in Fig. 11(a).

Fig. 12
Fig. 12

Measured reflectivity over wavelength of 6 points in (a) Region A and (b) Region B of the first FP sample.

Fig. 13
Fig. 13

Measured reflectivity over wavelength of 6 points in (a) Region A and (b) Region B of the second FP sample.

Tables (3)

Tables Icon

Table 1 Structural and optical properties and porosity levels of the analyzed two test PSi FP samples

Tables Icon

Table 2 Coefficients of the polynomial with a degree of 10 for fitting the measurement data of nc,Si [29]

Tables Icon

Table 3 Maximum percentage changes in resonant wavelength values and reflectivity values at λ0 for the simulations in Figs. 3, 4, and 6-9.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ M s ]=[ m 11 m 12 m 21 m 22 ],
m 11 =cos( k 0 n c d )= m 22 , m 12 = isin( k 0 n c d ) / n c , m 21 =i n c sin( k 0 n c d ),
R= | ( m 11,T + m 12,T n si ) n air ( m 21,T + m 22,T n si ) ( m 11,T + m 12,T n si ) n air +( m 21,T + m 22,T n si ) | 2 , [ M T ]=[ m 11,T m 12,T m 21,T m 22,T ]= s=1 N [ M s ] ,
n h d h = n l d l = λ 0 /4 ,
( 1 P h(l) )( n si 2 n h(l) 2 n si 2 +2 n h(l) 2 )+ P h(l) ( n air 2 n h(l) 2 n air 2 +2 n h(l) 2 )=0,
P h(l) = α 1 h(l) α 1 h(l) α 2 h(l) , α 1 h(l) = n si 2 n h(l) 2 n si 2 +2 n h(l) 2 , α 2 h(l) = n air 2 n h(l) 2 n air 2 +2 n h(l) 2 .
Γ= ( η 2 η 1 ) / ( η 2 + η 1 ) , R= | Γ | 2 ,

Metrics