Abstract

Optical images from nano-scale features were obtained by collection of leakage radiation coupled to surface plasmon polaritons excited by near-field fluorescence. Plasmonic crystals with spatial periods as small as 190 nm and non-periodic features separated by 80 nm, corresponding to ~λ/7, were clearly visible in the real plane images using this far-field technique. We show that the leaked light from the investigated samples carries detailed information to the far-field which is not present in the images obtained with conventional optical microscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  3. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
    [CrossRef] [PubMed]
  4. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  5. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23(11), 2383–2392 (2006).
    [CrossRef]
  6. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  7. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett.32(23), 3432–3434 (2007).
    [CrossRef] [PubMed]
  8. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007).
    [CrossRef] [PubMed]
  9. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007).
    [CrossRef] [PubMed]
  10. Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express15(12), 7095–7102 (2007).
    [CrossRef] [PubMed]
  11. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]
  12. S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
    [CrossRef]
  13. C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
    [CrossRef] [PubMed]
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1988).
  15. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004).
    [CrossRef] [PubMed]
  16. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
    [CrossRef] [PubMed]
  17. A. Giannattasio and W. L. Barnes, “Direct observation of surface plasmon-polariton dispersion,” Opt. Express13(2), 428–434 (2005).
    [CrossRef] [PubMed]
  18. C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
    [CrossRef]
  19. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
    [CrossRef]

2012 (1)

2011 (1)

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

2010 (1)

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

2009 (1)

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

2007 (7)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett.32(23), 3432–3434 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express15(12), 7095–7102 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

2004 (2)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Alekseyev, L. V.

Barnes, W. L.

Bernussi, A. A.

C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
[CrossRef] [PubMed]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Blaikie, R. J.

Chaturvedi, P.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

Chesnutt, C. F.

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

de Peralta, L.

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Durant, S.

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Fang, N. X.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

Frisbie, S. P.

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Giannattasio, A.

Grave de Peralta, L.

C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
[CrossRef] [PubMed]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Gryczynski, Z.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Holtz, M. E.

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Islam, M. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

Jacob, Z.

Kildishev, A. V.

Krishnan, A.

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004).
[CrossRef] [PubMed]

Lee, H.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express15(12), 7095–7102 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Liu, Z.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express15(12), 7095–7102 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23(11), 2383–2392 (2006).
[CrossRef]

Logeeswaran, V. J.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

Lopez-Boada, R.

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Melville, D. O. S.

Narimanov, E.

Narimanov, E. E.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Regan, C. J.

C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
[CrossRef] [PubMed]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Steele, J. M.

Sun, C.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express15(12), 7095–7102 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Thiabgoh, O.

Wang, S. Y.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

Williams, R.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

Wu, W.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

Xiong, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express15(12), 7095–7102 (2007).
[CrossRef] [PubMed]

Yu, Z.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

Zhang, X.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express15(12), 7095–7102 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23(11), 2383–2392 (2006).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010).
[CrossRef]

IEEE Photon. J. (1)

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Nano Lett. (2)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustrations of (a) dye-doped dielectric-loaded plasmonic crystal and (b) nano-sized Cr double lines.

Fig. 2
Fig. 2

Schematics of FP images obtained with the PCLR-superlens technique. (a) when the spatial period is just at the limit of resolvability, and (b) when the features will be resolvable.

Fig. 3
Fig. 3

Schematic illustration of the PCLR-superlens imaging setup.

Fig. 4
Fig. 4

SE images of dye doped dielectric loaded plasmonic crystals with periods 240 nm (a), 235 nm (b),and 230 nm (c). Corresponding FP images are shown in (d), (e), (f), respectively. For (a) and (b) the crystal features are resolvable, which is evident in (d) and (e) by the first order extra rings present (encircled in white boxes).

Fig. 5
Fig. 5

SEM (a), PCLR (b), and WL (c) images of 35 nm thick and 120 nm wide Cr double lines defined on the top of the gold layer. The double-line center-to-center (p) separation is 200 nm with an 80 nm gap between the lines.

Fig. 6
Fig. 6

Expanded view of the images shown in Fig. 5(a), Fig. 5(b) and Fig. 5(c). (a) SEM image, (b) PCLR image and (c) WL image. (d) line intensity profiles for the images shown in (b) and (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k spp = k o n eff = k o n sub sin( θ SPR )
k o n eff ±G= k o n sub sin( θ SPR )
| k o n eff ± G |<| k o NA |
p> λ NA+ n eff
Δx λ 2( NA+ n eff )

Metrics