Abstract

It is shown that grisms, a grating and prism combination, are a simple way to achieve chromatic control in 3D multi-plane imaging. A pair of grisms, whose separation can be varied, provide a collimated beam with a tuneable chromatic shear from a collimated polychromatic input. This simple control permits the correction of chromatic smearing in 3D imaging using off-axis Fresnel zone plates and improved control of the axial profile of a focussed spot in multi-photon experiments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Toomre and J. Bewersdorf, “A new wave of cellular imaging,” Annu. Rev. Cell Dev. Biol. 26(1), 285–314 (2010).
    [CrossRef] [PubMed]
  2. P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18(2), 877–884 (2010).
    [CrossRef] [PubMed]
  3. H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
    [CrossRef] [PubMed]
  4. P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183(1-4), 29–36 (2000).
    [CrossRef]
  5. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
    [CrossRef] [PubMed]
  6. W. A. Traub, “Constant-dispersion grism spectrometer for channelled spectra,” J. Opt. Soc. Am. A 7(9), 1779–1791 (1990).
    [CrossRef]
  7. T. H. Dou, R. Tautz, X. Gu, G. Marcus, T. Feurer, F. Krausz, and L. Veisz, “Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave,” Opt. Express 18(26), 27900–27909 (2010).
    [CrossRef] [PubMed]
  8. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31(22), 3363–3365 (2006).
    [CrossRef] [PubMed]
  9. S. Kane and J. Squier, “Grism-pair stretcher-compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14(3), 661–665 (1997).
    [CrossRef]
  10. K. Glazebrook, “LDSS++ commissioning report,” AAO Newsletter 87, 11–15 (1998).
  11. G. J. Hill, M. J. Wolf, J. R. Tufts, and E. C. Smith, “Volume Phase Holographic (VPH) Grisms for Optical and Infrared Spectrographs,” Proc. SPIE 4842, 1–9 (2003).
    [CrossRef]
  12. K. Nakajima, N. Ebizuka, M. Iye, and K. Kodate, “Optimal Fabrication of Volume Phase Holographic Grism with High Efficiency and High dispersion, and its application for astronomical observation,” Proc. SPIE 7014, 70141Q (2008).
    [CrossRef]
  13. N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).
  14. C. Palmer and E. Loewin, Diffraction Grating Handbook, 6th ed. (Newport Corp., 2005).
  15. P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38(32), 6692–6699 (1999).
    [CrossRef] [PubMed]
  16. S. Djidel, J. K. Gansel, H. I. Campbell, and A. H. Greenaway, “High-speed, 3-dimensional, telecentric imaging,” Opt. Express 14(18), 8269–8277 (2006).
    [CrossRef] [PubMed]
  17. Private communication from S Abrahamsson

2011

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

2010

2008

K. Nakajima, N. Ebizuka, M. Iye, and K. Kodate, “Optimal Fabrication of Volume Phase Holographic Grism with High Efficiency and High dispersion, and its application for astronomical observation,” Proc. SPIE 7014, 70141Q (2008).
[CrossRef]

2006

2003

G. J. Hill, M. J. Wolf, J. R. Tufts, and E. C. Smith, “Volume Phase Holographic (VPH) Grisms for Optical and Infrared Spectrographs,” Proc. SPIE 4842, 1–9 (2003).
[CrossRef]

2000

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183(1-4), 29–36 (2000).
[CrossRef]

1999

1998

K. Glazebrook, “LDSS++ commissioning report,” AAO Newsletter 87, 11–15 (1998).

1997

1990

Bewersdorf, J.

D. Toomre and J. Bewersdorf, “A new wave of cellular imaging,” Annu. Rev. Cell Dev. Biol. 26(1), 285–314 (2010).
[CrossRef] [PubMed]

Blanchard, P. M.

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183(1-4), 29–36 (2000).
[CrossRef]

P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38(32), 6692–6699 (1999).
[CrossRef] [PubMed]

Campbell, H. I.

Cheng, Y.

Dada, A. C.

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

Dalgarno, H. I. C.

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18(2), 877–884 (2010).
[CrossRef] [PubMed]

Dalgarno, P. A.

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18(2), 877–884 (2010).
[CrossRef] [PubMed]

Davis, I.

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

Djidel, S.

Dou, T. H.

Durfee, C.

Ebizuka, N.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

K. Nakajima, N. Ebizuka, M. Iye, and K. Kodate, “Optimal Fabrication of Volume Phase Holographic Grism with High Efficiency and High dispersion, and its application for astronomical observation,” Proc. SPIE 7014, 70141Q (2008).
[CrossRef]

Feurer, T.

Gansel, J. K.

Gaudiosi, D. M.

Gibson, E. A.

Gibson, G. J.

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

Glazebrook, K.

K. Glazebrook, “LDSS++ commissioning report,” AAO Newsletter 87, 11–15 (1998).

Greenaway, A. H.

Gu, X.

Hattori, T.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

He, F.

Hill, G. J.

G. J. Hill, M. J. Wolf, J. R. Tufts, and E. C. Smith, “Volume Phase Holographic (VPH) Grisms for Optical and Infrared Spectrographs,” Proc. SPIE 4842, 1–9 (2003).
[CrossRef]

Huff, R.

Iye, M.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

K. Nakajima, N. Ebizuka, M. Iye, and K. Kodate, “Optimal Fabrication of Volume Phase Holographic Grism with High Efficiency and High dispersion, and its application for astronomical observation,” Proc. SPIE 7014, 70141Q (2008).
[CrossRef]

Jimenez, R.

Kane, S.

Kapteyn, H. C.

Kashikawa, N.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

Kashiwagi, M.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

Kawabata, K. S.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

Kodate, K.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

K. Nakajima, N. Ebizuka, M. Iye, and K. Kodate, “Optimal Fabrication of Volume Phase Holographic Grism with High Efficiency and High dispersion, and its application for astronomical observation,” Proc. SPIE 7014, 70141Q (2008).
[CrossRef]

Krausz, F.

Lambert, R.

Logan, D. C.

Marcus, G.

Midorikawa, K.

Nakajima, K.

K. Nakajima, N. Ebizuka, M. Iye, and K. Kodate, “Optimal Fabrication of Volume Phase Holographic Grism with High Efficiency and High dispersion, and its application for astronomical observation,” Proc. SPIE 7014, 70141Q (2008).
[CrossRef]

Ni, J.

Oka, K.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

Parton, R. M.

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

Paterson, L.

Putoud, A.

Smith, E. C.

G. J. Hill, M. J. Wolf, J. R. Tufts, and E. C. Smith, “Volume Phase Holographic (VPH) Grisms for Optical and Infrared Spectrographs,” Proc. SPIE 4842, 1–9 (2003).
[CrossRef]

Squier, J.

Sugioka, K.

Tautz, R.

Toomre, D.

D. Toomre and J. Bewersdorf, “A new wave of cellular imaging,” Annu. Rev. Cell Dev. Biol. 26(1), 285–314 (2010).
[CrossRef] [PubMed]

Towers, C. E.

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

Towers, D. P.

Traub, W. A.

Tufts, J. R.

G. J. Hill, M. J. Wolf, J. R. Tufts, and E. C. Smith, “Volume Phase Holographic (VPH) Grisms for Optical and Infrared Spectrographs,” Proc. SPIE 4842, 1–9 (2003).
[CrossRef]

Veisz, L.

Warburton, R. J.

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18(2), 877–884 (2010).
[CrossRef] [PubMed]

Wolf, M. J.

G. J. Hill, M. J. Wolf, J. R. Tufts, and E. C. Smith, “Volume Phase Holographic (VPH) Grisms for Optical and Infrared Spectrographs,” Proc. SPIE 4842, 1–9 (2003).
[CrossRef]

Xiong, H.

Xu, H.

Xu, Z.

Yamada, A.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

AAO Newsletter

K. Glazebrook, “LDSS++ commissioning report,” AAO Newsletter 87, 11–15 (1998).

Annu. Rev. Cell Dev. Biol.

D. Toomre and J. Bewersdorf, “A new wave of cellular imaging,” Annu. Rev. Cell Dev. Biol. 26(1), 285–314 (2010).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. R. Soc. Interface

H. I. C. Dalgarno, P. A. Dalgarno, A. C. Dada, C. E. Towers, G. J. Gibson, R. M. Parton, I. Davis, R. J. Warburton, and A. H. Greenaway, “Nanometric depth resolution from multi-focal images in microscopy,” J. R. Soc. Interface 8(60), 942–951 (2011).
[CrossRef] [PubMed]

Opt. Commun.

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183(1-4), 29–36 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

G. J. Hill, M. J. Wolf, J. R. Tufts, and E. C. Smith, “Volume Phase Holographic (VPH) Grisms for Optical and Infrared Spectrographs,” Proc. SPIE 4842, 1–9 (2003).
[CrossRef]

K. Nakajima, N. Ebizuka, M. Iye, and K. Kodate, “Optimal Fabrication of Volume Phase Holographic Grism with High Efficiency and High dispersion, and its application for astronomical observation,” Proc. SPIE 7014, 70141Q (2008).
[CrossRef]

Publ. Astron. Soc. Jpn.

N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. Hattori, N. Kashikawa, and M. Iye, “Grisms developed for FOCAS,” Publ. Astron. Soc. Jpn. 63, S613–S622 (2011).

Other

C. Palmer and E. Loewin, Diffraction Grating Handbook, 6th ed. (Newport Corp., 2005).

Private communication from S Abrahamsson

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a pair of identical, back to back grisms used to produce a collimated beam with chromatic shear from a collimated polychrome input. The lateral shear between the polychrome components in the output beam is controlled by varying the separation between the grisms.

Fig. 2
Fig. 2

Schematic of the 1st experiment. Black arrows indicate how the chromatic shear, s, is changed by varying grism spacing, d. After the grism only the on-axis rays (solid) are shown in full, the off axis paraxial rays (dashed) are truncated for clarity. The angle at which the laser beams come to focus is assessed by scanning the camera axially about the ‘best focus’, as indicated Δz.

Fig. 3
Fig. 3

a) False-colour montage showing the separation of the image of the fibre source in each laser line as a function of camera distance from ‘best focus’. b) Shows the image separation as a function of camera position for various grism separations, using data of which (a) is an illustration for grism spacing 154 mm. c) The spatial chromatic shear produced by varying grism separation and deduced from (b) using the lens focal length.

Fig. 4
Fig. 4

(a) Schematic of the grism system used to correct chromatic blur in a 3D imaging system using a DOE in the form of an off-axis zone plate. The 3 foci shown on the right illustrate the position of focus of the single fibre source in each diffraction order and when the single source position is fixed. On a single, flat camera plane each diffraction order is focussed on a different specimen plane and the 3 foci are recorded simultaneously. In our measurements the zone plate has a 733mm focal length in the −1 diffraction order at 550nm and has a nominal axial period 45 µm; (b) False colour images from a (i) dual laser input and (ii-iv) bandpass-filtered white light source, in each case the total integrated images intensity has been equalised in each colour band. (i) 633 nm and 543 nm laser with and without grism correction. (ii) filtered white light input at a single focus (iii) filtered white light input at optimal focii for each colour and (iv) filtered white light input of the 0th order, showing unmodified images with and without grisms.

Fig. 5
Fig. 5

Simulation of chromatic correction applied to fluorophore imaging. (a)-(c) normalised spectrum for eGFP, Cy5 and mCherry with overlayed, weigthed, 20 nm bandpass slices used to model spectral form using white light. (d) Monochrome images of the fluorophore image, simulated from bandpass weighting as in (a)-(c) with and without grism correction. The panels in (d) show show images and sectional profile through the imaged spots. The sectional profile ‘with grisms’ also shows an ideal profile of a narrow band spot (cyan, 3nm bandpass) that represents ideal imaging of the 50 μm fibre source.

Metrics