Abstract

We demonstrated an integrated tunable interferometer in Polydimethylsiloxane (PDMS). In contrast to most on-chip interferometers which require complex fabrication, our design is realized by conventional soft lithography fabrication. The optical path difference occurs during propagation across a fluid-fluid interface. The diffusion level of the two miscible liquids which is controlled by liquid flow rates provides tunability. Different ratio of two liquid flow rates result in the interference spectral shift. Interference peak numbers are varied with flow rate ratio of two liquids. Mutual diffusion between two liquids changes the profile of the refractive index across the fluidic channel. The two arms structure of our design provides convenience for sensing and detection in biology system. This device not only offers the convenience for microfluidic networks but also paves the way for sensing in chemical microreactors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
    [CrossRef]
  3. N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics4(3), 031501 (2010).
    [CrossRef] [PubMed]
  4. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1–2), 145–158 (2008).
    [CrossRef]
  5. D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
    [CrossRef]
  6. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
    [CrossRef]
  7. M. B. Christiansen, J. M. Lopacinska, M. H. Jakobsen, N. A. Mortensen, M. Dufva, and A. Kristensen, “Polymer photonic crystal dye lasers as Optofluidic Cell Sensors,” Opt. Express17(4), 2722–2730 (2009).
    [CrossRef] [PubMed]
  8. R. Shamai and U. Levy, “On chip tunable micro ring resonator actuated by electrowetting,” Opt. Express17(2), 1116–1125 (2009).
    [CrossRef] [PubMed]
  9. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006).
    [CrossRef]
  10. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
    [CrossRef] [PubMed]
  11. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
    [CrossRef] [PubMed]
  12. M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
    [CrossRef] [PubMed]
  13. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
    [CrossRef] [PubMed]
  14. R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008).
    [CrossRef]
  15. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer,” Opt. Express16(22), 18164–18172 (2008).
    [CrossRef] [PubMed]
  16. G. Testa, Y. J. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett.35(10), 1584–1586 (2010).
    [CrossRef] [PubMed]
  17. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
    [CrossRef] [PubMed]
  18. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt.42(28), 5649–5660 (2003).
    [CrossRef] [PubMed]
  19. A. Brandenburg and R. Henninger, “Integrated optical Young interferometer,” Appl. Opt.33(25), 5941–5947 (1994).
    [CrossRef] [PubMed]
  20. A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005).
    [CrossRef]
  21. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
    [CrossRef]
  22. C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
    [CrossRef]
  23. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
    [CrossRef]
  24. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
    [CrossRef] [PubMed]

2011 (2)

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
[CrossRef] [PubMed]

2010 (5)

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

G. Testa, Y. J. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett.35(10), 1584–1586 (2010).
[CrossRef] [PubMed]

N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics4(3), 031501 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (4)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1–2), 145–158 (2008).
[CrossRef]

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer,” Opt. Express16(22), 18164–18172 (2008).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

2007 (2)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

2006 (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006).
[CrossRef]

2005 (2)

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
[CrossRef]

A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005).
[CrossRef]

2003 (1)

2001 (1)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

1998 (2)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

1994 (1)

Andreev, A.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Bernini, R.

G. Testa, Y. J. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett.35(10), 1584–1586 (2010).
[CrossRef] [PubMed]

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008).
[CrossRef]

Beumer, T. A. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

Brandenburg, A.

Callender, C. L.

Cerullo, G.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Chiang, I.-K.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
[CrossRef] [PubMed]

Chin, L. K.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

Christiansen, M. B.

Chryssis, A.

A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005).
[CrossRef]

Collins, M.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

Conroy, R. S.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
[CrossRef]

Crespi, A.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Cronin-Golomb, M.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006).
[CrossRef]

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Dagenais, M.

A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005).
[CrossRef]

De Sio, L.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Ding, X. Y.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
[CrossRef] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006).
[CrossRef]

Dongre, C.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Dufva, M.

Dumais, P.

Ecke, W.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006).
[CrossRef]

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt.42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Grillet, C.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

Gu, Y.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt.42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Henninger, R.

Hoekstra, H. J. W. M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Huang, T. J.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
[CrossRef] [PubMed]

Huang, Y. J.

Jakobsen, M. H.

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt.42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Kristensen, A.

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt.42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Lapsley, M. I.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
[CrossRef] [PubMed]

Ledderhof, C. J.

Lee, S.

A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005).
[CrossRef]

A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005).
[CrossRef]

Levy, U.

Li, Z.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1–2), 145–158 (2008).
[CrossRef]

Lim, C. S.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

Lin, C. L.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006).
[CrossRef]

Liu, A. Q.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

Lopacinska, J. M.

Mahmud, T.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

Mao, X.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
[CrossRef] [PubMed]

Mayers, B. T.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
[CrossRef]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Mitchell, A.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Mortensen, N. A.

Mueller, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Mutzenich, S.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

Ngamsom, B.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Nguyen, N. T.

N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics4(3), 031501 (2010).
[CrossRef] [PubMed]

Noad, J. P.

Osellame, R.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Pollnau, M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Prentiss, M. G.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
[CrossRef]

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1–2), 145–158 (2008).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Ramponi, R.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Rosengarten, G.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

Saini, S.

A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005).
[CrossRef]

Sarro, P. M.

G. Testa, Y. J. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett.35(10), 1584–1586 (2010).
[CrossRef] [PubMed]

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008).
[CrossRef]

Schroeder, K.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Schueller, O. J. A.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Shamai, R.

Soh, Y. C.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

Testa, G.

G. Testa, Y. J. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett.35(10), 1584–1586 (2010).
[CrossRef] [PubMed]

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008).
[CrossRef]

van den Vlekkert, H. H.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

van Hövell, S. W. F. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Vezenov, D. V.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
[CrossRef]

Watts, P.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Whitesides, G. M.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
[CrossRef]

Wijn, R.

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

Willsch, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

Wolfe, D. B.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
[CrossRef]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt.42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Zeni, L.

G. Testa, Y. J. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett.35(10), 1584–1586 (2010).
[CrossRef] [PubMed]

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008).
[CrossRef]

Zheng, Y. B.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
[CrossRef] [PubMed]

Anal. Chem. (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006).
[CrossRef]

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005).
[CrossRef]

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008).
[CrossRef]

Biomicrofluidics (1)

N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics4(3), 031501 (2010).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005).
[CrossRef]

Lab Chip (4)

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Microfluid. Nanofluid. (2)

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008).
[CrossRef]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1–2), 145–158 (2008).
[CrossRef]

Nano Lett. (1)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007).
[CrossRef] [PubMed]

Nat. Photonics (2)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Configuration of the interferometer. (b) and (c)Micrographs of the inserted fibers and micro-lenses. (d) and (e) Part of chip in experiment.

Fig. 2
Fig. 2

(a) Interference curves at flow rates of Qwater: Qethylene glycol = 15μl/min:3μl/min and Qwater: Qethylene glycol = 10μl/min:3μl/min. (b) and (c) Simulation results of the diffusion at the flow rate ratios of Qwater: Qethylene glycol = 10μl/min:3μl/min and Qwater: Qethylene glycol = 15μl/min:3μl/min.

Fig. 3
Fig. 3

(a) Interference curves at flow rates of Qwater: Qethylene glycol = 25μl/min:5μl/min, Qwater: Qethylene glycol = 25μl/min:3μl/min and Qwater: Qethylene glycol = 25μl/min:2μl/min. (b)-(d) Simulation results of the diffusion at the flow rate ratios of Qwater: Qethylene glycol = 25μl/min:2μl/min, Qwater: Qethylene glycol = 25μl/min:3μl/min and Qwater: Qethylene glycol = 25μl/min:5μl/min.

Fig. 4
Fig. 4

(a) Interference curves at flow rates of Qwater: Qethylene glycol = 40μl/min:0.5μl/min, Qwater: Qethylene glycol = 38μl/min:6μl/min and Qwater: Qethylene glycol = 35μl/min:2.5μl/min. (b)-(d) Simulation results of the diffusion at the flow rates ratio of Qwater: Qethylene glycol = 38μl/min:6μl/min, Qwater: Qethylene glycol = 35μl/min:2.5μl/min and Qwater: Qethylene glycol = 40μl/min:0.5μl/min.

Fig. 5
Fig. 5

[1]-[4] Different locations of interface. (a)-(d) are the corresponding refractive index distributions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δnd=mλ,(m=1,2,3...),

Metrics