Abstract

Compressed sensing (CS) can recover sparse signals from under-sampled measurements. In this work, we have developed an advanced CS framework for photoacoustic computed tomography (PACT). During the reconstruction, a small part of the nonzero signals’ locations in the transformed sparse domain is used as partially known support (PKS). PACT reconstructions have been performed with under-sampled in vivo image data of human hands and a rat. Compared to PACT with basic CS, PACT with CS-PKS can recover signals using fewer ultrasonic transducer elements and can improve convergence speed, which may ultimately enable high-speed, low-cost PACT for various biomedical applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [CrossRef] [PubMed]
  2. G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
    [CrossRef] [PubMed]
  3. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  4. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [CrossRef] [PubMed]
  5. C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
    [CrossRef] [PubMed]
  6. Z. X. Xie, W. Roberts, P. Carson, X. Liu, C. Tao, and X. Wang, “Evaluation of bladder microvasculature with high-resolution photoacoustic imaging,” Opt. Lett. 36(24), 4815–4817 (2011).
    [CrossRef] [PubMed]
  7. W. Wei, X. Li, Q. F. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
    [CrossRef] [PubMed]
  8. X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  9. C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
    [CrossRef] [PubMed]
  10. L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt. 15(2), 021303 (2010).
    [CrossRef] [PubMed]
  11. L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36(7), 1236–1238 (2011).
    [CrossRef] [PubMed]
  12. L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
    [CrossRef] [PubMed]
  13. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).
    [CrossRef] [PubMed]
  14. D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
    [CrossRef] [PubMed]
  15. G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660–663 (2008).
    [CrossRef] [PubMed]
  16. J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
    [CrossRef] [PubMed]
  17. D. Liang, H. F. Zhang, and L. Ying, “Compressed-sensing photoacoustic imaging based on random optical illumination,” IJFIPM 2(4), 394–406 (2009).
    [CrossRef]
  18. Z. J. Guo, C. H. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).
    [CrossRef] [PubMed]
  19. M. J. Sun, N. Z. Feng, Y. Shen, X. L. Shen, L. Y. Ma, J. G. Li, and Z. H. Wu, “Photoacoustic imaging method based on arc-direction compressed sensing and multi-angle observation,” Opt. Express 19(16), 14801–14806 (2011).
    [CrossRef] [PubMed]
  20. N. Vaswani and W. Lu, “Modified-CS: Modifying compressive sensing for problems with partially known support,” IEEE T Signal Process. 58, 4595–4607 (2010).
  21. D. Liang, E. V. R. DiBella, R. R. Chen, and L. Ying, “k-t ISD: Dynamic cardiac MR imaging using compressed sensing with iterative support detection,” Magn. Reson. Med., doi:.
    [CrossRef]
  22. M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
    [CrossRef] [PubMed]
  23. Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar Geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
    [CrossRef] [PubMed]
  24. Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support detection,” SIAM J. Imaging Sciences 3(3), 462–491 (2010).
    [CrossRef]
  25. L. Jacques, “A short note on compressed sensing with partially known signal support,” Signal Process. 90(12), 3308–3312 (2010).
    [CrossRef]
  26. Y. Tsaig and D. Donoho, “Extensions of compressed sensing,” Signal Process. 86, 549–571 (2006).
    [CrossRef]
  27. K. K. Shung and M. Zippuro, “Ultrasonic transducers and arrays,” IEEE Eng. Med. Biol. 15(6), 20–30 (1996).
    [CrossRef]
  28. The Laser Institute of America, American National Standard for Safe Use of Lasers, (ANSI Z136.1–2000), The Laser Institute of America (2000).

2012 (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (8)

C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt. 15(2), 021303 (2010).
[CrossRef] [PubMed]

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

Z. J. Guo, C. H. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).
[CrossRef] [PubMed]

N. Vaswani and W. Lu, “Modified-CS: Modifying compressive sensing for problems with partially known support,” IEEE T Signal Process. 58, 4595–4607 (2010).

Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support detection,” SIAM J. Imaging Sciences 3(3), 462–491 (2010).
[CrossRef]

L. Jacques, “A short note on compressed sensing with partially known signal support,” Signal Process. 90(12), 3308–3312 (2010).
[CrossRef]

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
[CrossRef] [PubMed]

D. Liang, H. F. Zhang, and L. Ying, “Compressed-sensing photoacoustic imaging based on random optical illumination,” IJFIPM 2(4), 394–406 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

2008 (2)

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[CrossRef] [PubMed]

G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660–663 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

2006 (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Y. Tsaig and D. Donoho, “Extensions of compressed sensing,” Signal Process. 86, 549–571 (2006).
[CrossRef]

2005 (2)

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
[CrossRef] [PubMed]

M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

2003 (1)

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

2002 (1)

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar Geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

1996 (1)

K. K. Shung and M. Zippuro, “Ultrasonic transducers and arrays,” IEEE Eng. Med. Biol. 15(6), 20–30 (1996).
[CrossRef]

Aguirre, A.

C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[CrossRef] [PubMed]

Bitton, R.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[CrossRef] [PubMed]

Carson, P.

Chen, G. H.

G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660–663 (2008).
[CrossRef] [PubMed]

Chen, R. R.

D. Liang, E. V. R. DiBella, R. R. Chen, and L. Ying, “k-t ISD: Dynamic cardiac MR imaging using compressed sensing with iterative support detection,” Magn. Reson. Med., doi:.
[CrossRef]

Chen, Z.

W. Wei, X. Li, Q. F. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

DiBella, E. V. R.

D. Liang, E. V. R. DiBella, R. R. Chen, and L. Ying, “k-t ISD: Dynamic cardiac MR imaging using compressed sensing with iterative support detection,” Magn. Reson. Med., doi:.
[CrossRef]

Donoho, D.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

Y. Tsaig and D. Donoho, “Extensions of compressed sensing,” Signal Process. 86, 549–571 (2006).
[CrossRef]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Favazza, C.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

Feng, D. Z.

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar Geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

Feng, J. C.

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

Feng, N. Z.

Gamelin, J.

C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[CrossRef] [PubMed]

Guo, Z. J.

Z. J. Guo, C. H. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).
[CrossRef] [PubMed]

Han, D.

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Jacques, L.

L. Jacques, “A short note on compressed sensing with partially known signal support,” Signal Process. 90(12), 3308–3312 (2010).
[CrossRef]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Kim, C.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

Ku, G.

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Leng, S.

G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660–663 (2008).
[CrossRef] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Lesage, F.

J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
[CrossRef] [PubMed]

Li, C. H.

Z. J. Guo, C. H. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).
[CrossRef] [PubMed]

C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[CrossRef] [PubMed]

Li, J. G.

Li, X.

W. Wei, X. Li, Q. F. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

Liang, D.

D. Liang, H. F. Zhang, and L. Ying, “Compressed-sensing photoacoustic imaging based on random optical illumination,” IJFIPM 2(4), 394–406 (2009).
[CrossRef]

D. Liang, E. V. R. DiBella, R. R. Chen, and L. Ying, “k-t ISD: Dynamic cardiac MR imaging using compressed sensing with iterative support detection,” Magn. Reson. Med., doi:.
[CrossRef]

Liu, K.

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

Liu, X.

Lu, W.

N. Vaswani and W. Lu, “Modified-CS: Modifying compressive sensing for problems with partially known support,” IEEE T Signal Process. 58, 4595–4607 (2010).

Lustig, M.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

Ma, L. Y.

Ma, X.

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

Maslov, K.

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt. 15(2), 021303 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Maurudis, A.

C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[CrossRef] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Pang, Y. J.

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Pauly, J. M.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

Provost, J.

J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
[CrossRef] [PubMed]

Qin, C. H.

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

Roberts, W.

Shen, X. L.

Shen, Y.

Shung, K. K.

W. Wei, X. Li, Q. F. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt. 15(2), 021303 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[CrossRef] [PubMed]

K. K. Shung and M. Zippuro, “Ultrasonic transducers and arrays,” IEEE Eng. Med. Biol. 15(6), 20–30 (1996).
[CrossRef]

Song, L.

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt. 15(2), 021303 (2010).
[CrossRef] [PubMed]

Z. J. Guo, C. H. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Sun, M. J.

Tang, J.

G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660–663 (2008).
[CrossRef] [PubMed]

Tao, C.

Tian, J.

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

Tsaig, Y.

Y. Tsaig and D. Donoho, “Extensions of compressed sensing,” Signal Process. 86, 549–571 (2006).
[CrossRef]

Vaswani, N.

N. Vaswani and W. Lu, “Modified-CS: Modifying compressive sensing for problems with partially known support,” IEEE T Signal Process. 58, 4595–4607 (2010).

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

Z. J. Guo, C. H. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt. 15(2), 021303 (2010).
[CrossRef] [PubMed]

C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[CrossRef] [PubMed]

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
[CrossRef] [PubMed]

M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar Geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

Wang, X.

Wang, X. D.

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support detection,” SIAM J. Imaging Sciences 3(3), 462–491 (2010).
[CrossRef]

Wei, W.

W. Wei, X. Li, Q. F. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

Wu, Z. H.

Xie, X. Y.

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xie, Z. X.

Xu, M. H.

M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar Geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

Yin, W.

Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support detection,” SIAM J. Imaging Sciences 3(3), 462–491 (2010).
[CrossRef]

Ying, L.

D. Liang, H. F. Zhang, and L. Ying, “Compressed-sensing photoacoustic imaging based on random optical illumination,” IJFIPM 2(4), 394–406 (2009).
[CrossRef]

D. Liang, E. V. R. DiBella, R. R. Chen, and L. Ying, “k-t ISD: Dynamic cardiac MR imaging using compressed sensing with iterative support detection,” Magn. Reson. Med., doi:.
[CrossRef]

Zhang, B.

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

Zhang, H. F.

D. Liang, H. F. Zhang, and L. Ying, “Compressed-sensing photoacoustic imaging based on random optical illumination,” IJFIPM 2(4), 394–406 (2009).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Zhou, Q. F.

W. Wei, X. Li, Q. F. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

Zhu, Q.

C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[CrossRef] [PubMed]

Zippuro, M.

K. K. Shung and M. Zippuro, “Ultrasonic transducers and arrays,” IEEE Eng. Med. Biol. 15(6), 20–30 (1996).
[CrossRef]

Appl. Opt. (1)

Chem. Rev. (1)

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

IEEE Eng. Med. Biol. (1)

K. K. Shung and M. Zippuro, “Ultrasonic transducers and arrays,” IEEE Eng. Med. Biol. 15(6), 20–30 (1996).
[CrossRef]

IEEE T Signal Process. (1)

N. Vaswani and W. Lu, “Modified-CS: Modifying compressive sensing for problems with partially known support,” IEEE T Signal Process. 58, 4595–4607 (2010).

IEEE Trans. Biomed. Eng. (1)

D. Han, J. Tian, K. Liu, J. C. Feng, B. Zhang, X. Ma, and C. H. Qin, “Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57(10), 2564–2567 (2010).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
[CrossRef] [PubMed]

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar Geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

IJFIPM (1)

D. Liang, H. F. Zhang, and L. Ying, “Compressed-sensing photoacoustic imaging based on random optical illumination,” IJFIPM 2(4), 394–406 (2009).
[CrossRef]

J. Biomed. Opt. (6)

Z. J. Guo, C. H. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).
[CrossRef] [PubMed]

W. Wei, X. Li, Q. F. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

C. H. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu, and L. V. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15(1), 010509 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt. 15(2), 021303 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[CrossRef] [PubMed]

Magn. Reson. Med. (2)

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

D. Liang, E. V. R. DiBella, R. R. Chen, and L. Ying, “k-t ISD: Dynamic cardiac MR imaging using compressed sensing with iterative support detection,” Magn. Reson. Med., doi:.
[CrossRef]

Med. Phys. (1)

G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660–663 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

SIAM J. Imaging Sciences (1)

Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support detection,” SIAM J. Imaging Sciences 3(3), 462–491 (2010).
[CrossRef]

Signal Process. (2)

L. Jacques, “A short note on compressed sensing with partially known signal support,” Signal Process. 90(12), 3308–3312 (2010).
[CrossRef]

Y. Tsaig and D. Donoho, “Extensions of compressed sensing,” Signal Process. 86, 549–571 (2006).
[CrossRef]

Other (1)

The Laser Institute of America, American National Standard for Safe Use of Lasers, (ANSI Z136.1–2000), The Laser Institute of America (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reconstructed images of the subcutaneous vasculature of human hand-1, with data from all 48 transducer elements. (A) Photograph of the hand; (B) – (D) MAP images reconstructed by the BP, TD-CS, and FD-CS methods, respectively; (a) – (f) B-scan images along the dashed lines in (B) – (D). x is the (lateral) direction of the transducer array, y is the mechanical scanning direction, and z is the depth direction. MAP, maximum amplitude projection; BP, back-projection; TD-CS, compressed sensing in time domain; FD-CS, compressed sensing in frequency domain. The color-scale represents relative optical absorption.

Fig. 2
Fig. 2

Reconstructed images of the subcutaneous vasculature of human hand-1, with data from 16 transducer elements. (A) – (C) MAP images reconstructed by BP, TD-CS, and FD-CS respectively; (a) – (f) B-scan images along the dashed lines in (A) – (C). x is the (lateral) direction of the transducer array, y is the mechanical scanning direction, and z is the depth direction. MAP, maximum amplitude projection; BP, back-projection; TD-CS, compressed sensing in time domain; FD-CS, compressed sensing in frequency domain. The color-scale represents relative optical absorption.

Fig. 3
Fig. 3

Reconstructed images of the subcutaneous vasculature of human hand-2. (A,B) MAP images reconstructed by BP with data from 48 and 16 transducer elements, respectively; (C,D) MAP images reconstructed by the FD-CS and the FD-CS-PKS methods, respectively, with data from 16 transducer elements; (a) – (h) B-scan images along the dashed lines in (A) – (D). x is the (lateral) direction of the transducer array, y is the mechanical scanning direction, and z is the depth direction. MAP, maximum amplitude projection; BP, back-projection; FD-CS, compressed sensing in frequency domain; FD-CS-PKS, compressed sensing with partially known support in frequency domain. The color-scale represents relative optical absorption.

Fig. 4
Fig. 4

Reconstructed images of the subcutaneous vasculature of the back of a rat. (A,B) MAP images reconstructed by BP with data from 48 and 16 transducer elements, respectively; (C,D) MAP images reconstructed by the FD-CS and the FD-CS-PKS methods, respectively, with data from 16 transducer elements; (a) – (h) B-scan images along the dashed lines in (A) – (D). x is the (lateral) direction of the transducer array, y is the mechanical scanning direction, and z is the depth direction. MAP, maximum amplitude projection; BP, back-projection; FD-CS, compressed sensing in frequency domain; FD-CS-PKS, compressed sensing with partially known support in frequency domain. The color-scale represents relative optical absorption.

Fig. 5
Fig. 5

Histograms of the amplitudes of the difference images using the image reconstructed by FD-CS with data from all 48 transducer elements as the control. (A) – (C) Histograms of the amplitudes of the difference images for Hand-1; (D) – (F) Histograms of the amplitudes of the difference images for Hand-2; (G) – (I) Histograms of the amplitudes of the difference images for the Rat. BP, back-projection; CS, compressed sensing; TD-CS, compressed sensing in time domain; FD-CS, compressed sensing in frequency domain; FD-CS-PKS, compressed sensing with partially known support in frequency domain; the number 16 after each reconstruction method name indicates that the reconstruction is performed with data from only 16 transducer elements.

Fig. 6
Fig. 6

Photoacoustic amplitudes (relative optical absorption) along the chosen pink lines in MAP images of (A) human hand-2 (Fig. 3 (A)), and (B) the rat (Fig. 4 (A)). Insets, the contrast to noise ratios (CNRs) of selected signal peaks. BP, back-projection; CS, compressed sensing; PKS, compressed sensing with partially known support; the number 48 or 16 after each reconstruction method name indicates that the reconstruction is performed with data from 48 or 16 transducer elements.

Tables (2)

Tables Icon

Table 1 Cross-correlation Coefficients using FD-CS48 as the Control

Tables Icon

Table 2 Values of Reconstruction Parameters Used in the Experiments

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

( 2 1 c 2 2 t 2 )p(r,t)= p 0 (r) dδ(t) dt ,
p(r,t)= t [ 1 4π c 3 t dr' p 0 (r')δ( t | rr' | c ) ],
p ¯ (r,k)= + p(r, t ¯ ) exp(ik t ¯ )d t ¯ ,
p ¯ (r,k)=ick dr' p 0 (r') ( exp( ik| rr' | ) | rr' | ).
min x 1 s.t. y=K ψ 1 x .
K (m,t) (i,j) = 1 2πc δ(t | r i,j r m | c ),m=1,2,,p;t=sΔt,s=1,2,, q s .
K (m,n) (i,j) =ic k n exp( i k n | r i,j r m | ) | r i,j r m | ,m=1,2,,p;n=1,2,, q n .
min x Δ 1 s.t. Φxy 2 <ε,
arg min x F= Φxy 2 2 +α x 1 +βTV( Ψ 1 x),
arg min x F= Φxy 2 2 +α x Δ 1 +βTV( Ψ 1 x).
( x Δ ) i ={ x i x i Δ 0 otherwise .
arg min x F= Φxy 2 2 +α W (i1) x 1 +βTV( Ψ 1 x),
T 0 (i) ={ z:| x z (i) |> τ (i) },
corr= i j ( I ij r I ¯ r )( I ij o I ¯ o ) ( i j ( I ij r I ¯ r ) 2 )( i j ( I ij o I ¯ o ) 2 ) ,

Metrics