Abstract

Personalized eye modeling of normal and diseased eye conditions is attractive due to the recent availability of detailed ocular measurements in clinic environments and the promise of its medical and industrial applications. In the customized modeling, the optical properties of the crystalline lens including the gradient refractive index, the lens bio-geometry and orientation are typically assigned with average lens parameters from literature since typically they are not clinically available. Although, through the optical optimization by assigning lens parameters as variables, the clinical measured wavefront aberration can be achieved, the optimized lens biometry and orientation often end up at edges of the statistical distribution. Without an effective validation of these models today, the fidelity of the final lens (and therefore the model) remains questionable. To develop a more reliable customized model without detailed lens information, we incorporate age-appropriate lens parameters as the initial condition of optical optimization. A biconic lens optimization was first performed to provide a correct lens profile for accurate lower order aberration and then followed by the wavefront optimization. Clinical subjects were selected from all ages with both normal and diseased corneal and refractive conditions. 19 ammetropic eyes ( + 4D to −11D), and 16 keratoconus eyes (mild to moderate with cylinder 0.25 to 6D) were modeled. Age- and gender-corrected refractive index was evaluated. Final models attained the lens shapes comparable to the statistical distribution in their age.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gullstrand, “The optical system of the eye,” in Physiological Optics 3rd ed., H. von Helmholtz (Hamburg, Voss, 1909), 1, 350–358.
  2. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61(11), 1522–1529 (1971).
    [CrossRef]
  3. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
    [CrossRef] [PubMed]
  4. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [CrossRef] [PubMed]
  5. R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
    [CrossRef] [PubMed]
  6. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007).
    [CrossRef] [PubMed]
  7. Y.-L. Chen, B. Tan, K. Baker, J. W. L. Lewis, T. Swartz, Y. Jiang, and M. Wang, “Simulation of keratoconus observation in photorefraction,” Opt. Express 14(23), 11477–11485 (2006).
    [CrossRef] [PubMed]
  8. C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
    [PubMed]
  9. J. Castanera, A. Serra, and C. Rios, “Wavefront-guided ablation with Bausch and Lomb Zyoptix for retreatments after laser in situ keratomileusis for myopia,” J. Refract. Surg. 20(5), 439–443 (2004).
    [PubMed]
  10. D. Y. Lin and E. E. Manche, “Custom-contoured ablation pattern method for the treatment of decentered laser ablations,” J. Cataract Refract. Surg. 30(8), 1675–1684 (2004).
    [CrossRef] [PubMed]
  11. J. B. Almeida and A. M. Garcia, “Theoretical calculation of a contact lens thickness designed to correct the eye’s monochromatic aberrations,” Optom. Vis. Sci. 82(1), 59–63 (2005).
    [PubMed]
  12. J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
    [PubMed]
  13. W. N. Charman, “Wavefront technology: past, present and future,” Cont. Lens Anterior Eye 28(2), 75–92 (2005).
    [CrossRef] [PubMed]
  14. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
    [CrossRef] [PubMed]
  15. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  16. D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci. 74(7), 489–495 (1997).
    [CrossRef] [PubMed]
  17. D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
    [CrossRef] [PubMed]
  18. S. Stenstrom, “Investigation of the variation and the correlation of the optical elements of human eye Part V—Chapter III (D. Woolf, Trans.),” Am. J. Optom. Arch. Am. Acad. Optom. 25, 438–449 (1948).
    [PubMed]
  19. N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
    [PubMed]
  20. R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Ophthalmic Physiol. Opt. 13(1), 41–47 (1993).
    [CrossRef] [PubMed]
  21. H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
    [CrossRef] [PubMed]
  22. L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
    [CrossRef] [PubMed]
  23. A. Cook, S. White, M. Batterbury, and D. Clark, “Ocular growth and refractive error development in premature infants without retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(3), 953–960 (2003).
    [CrossRef] [PubMed]
  24. D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
    [CrossRef] [PubMed]
  25. F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res. 41(21), 2799–2810 (2001).
    [CrossRef] [PubMed]
  26. S. Ziylan, D. Serin, and S. Karslioglu, “Myopia in preterm children at 12 to 24 months of age,” J. Pediatr. Ophthalmol. Strabismus 43(3), 152–156 (2006).
    [PubMed]
  27. Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).
  28. L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
    [CrossRef] [PubMed]
  29. J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye--aging of the anterior segment,” Vision Res. 29(12), 1685–1692 (1989).
    [CrossRef] [PubMed]
  30. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
    [CrossRef] [PubMed]
  31. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008).
    [CrossRef] [PubMed]
  32. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A 27(11), 2432–2441 (2010).
    [CrossRef] [PubMed]
  33. G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86(1), 3–18 (2003).
    [CrossRef] [PubMed]
  34. J. Rozema, D. Atchison, and M. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).
    [CrossRef] [PubMed]

2011 (1)

J. Rozema, D. Atchison, and M. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).
[CrossRef] [PubMed]

2010 (2)

C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A 27(11), 2432–2441 (2010).
[CrossRef] [PubMed]

Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).

2008 (2)

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (4)

S. Ziylan, D. Serin, and S. Karslioglu, “Myopia in preterm children at 12 to 24 months of age,” J. Pediatr. Ophthalmol. Strabismus 43(3), 152–156 (2006).
[PubMed]

Y.-L. Chen, B. Tan, K. Baker, J. W. L. Lewis, T. Swartz, Y. Jiang, and M. Wang, “Simulation of keratoconus observation in photorefraction,” Opt. Express 14(23), 11477–11485 (2006).
[CrossRef] [PubMed]

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[CrossRef] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

2005 (4)

J. B. Almeida and A. M. Garcia, “Theoretical calculation of a contact lens thickness designed to correct the eye’s monochromatic aberrations,” Optom. Vis. Sci. 82(1), 59–63 (2005).
[PubMed]

W. N. Charman, “Wavefront technology: past, present and future,” Cont. Lens Anterior Eye 28(2), 75–92 (2005).
[CrossRef] [PubMed]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[CrossRef] [PubMed]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

2004 (3)

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

J. Castanera, A. Serra, and C. Rios, “Wavefront-guided ablation with Bausch and Lomb Zyoptix for retreatments after laser in situ keratomileusis for myopia,” J. Refract. Surg. 20(5), 439–443 (2004).
[PubMed]

D. Y. Lin and E. E. Manche, “Custom-contoured ablation pattern method for the treatment of decentered laser ablations,” J. Cataract Refract. Surg. 30(8), 1675–1684 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Cook, S. White, M. Batterbury, and D. Clark, “Ocular growth and refractive error development in premature infants without retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(3), 953–960 (2003).
[CrossRef] [PubMed]

G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86(1), 3–18 (2003).
[CrossRef] [PubMed]

2002 (2)

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

2001 (2)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res. 41(21), 2799–2810 (2001).
[CrossRef] [PubMed]

1997 (3)

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci. 74(7), 489–495 (1997).
[CrossRef] [PubMed]

N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
[PubMed]

H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
[CrossRef] [PubMed]

1993 (1)

R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Ophthalmic Physiol. Opt. 13(1), 41–47 (1993).
[CrossRef] [PubMed]

1992 (1)

H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
[CrossRef] [PubMed]

1989 (1)

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye--aging of the anterior segment,” Vision Res. 29(12), 1685–1692 (1989).
[CrossRef] [PubMed]

1985 (1)

1971 (1)

1948 (1)

S. Stenstrom, “Investigation of the variation and the correlation of the optical elements of human eye Part V—Chapter III (D. Woolf, Trans.),” Am. J. Optom. Arch. Am. Acad. Optom. 25, 438–449 (1948).
[PubMed]

Adams, D. W.

N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
[PubMed]

Almeida, J. B.

J. B. Almeida and A. M. Garcia, “Theoretical calculation of a contact lens thickness designed to correct the eye’s monochromatic aberrations,” Optom. Vis. Sci. 82(1), 59–63 (2005).
[PubMed]

Atchison, D.

J. Rozema, D. Atchison, and M. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[CrossRef] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

Baker, K.

Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).

Y.-L. Chen, B. Tan, K. Baker, J. W. L. Lewis, T. Swartz, Y. Jiang, and M. Wang, “Simulation of keratoconus observation in photorefraction,” Opt. Express 14(23), 11477–11485 (2006).
[CrossRef] [PubMed]

Batterbury, M.

A. Cook, S. White, M. Batterbury, and D. Clark, “Ocular growth and refractive error development in premature infants without retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(3), 953–960 (2003).
[CrossRef] [PubMed]

Bescós, J.

Brady, T. J.

H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
[CrossRef] [PubMed]

Brennan, N. A.

Campbell, C. E.

Carkeet, A.

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

Castanera, J.

J. Castanera, A. Serra, and C. Rios, “Wavefront-guided ablation with Bausch and Lomb Zyoptix for retreatments after laser in situ keratomileusis for myopia,” J. Refract. Surg. 20(5), 439–443 (2004).
[PubMed]

Chan, W. Y.

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman, “Wavefront technology: past, present and future,” Cont. Lens Anterior Eye 28(2), 75–92 (2005).
[CrossRef] [PubMed]

F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res. 41(21), 2799–2810 (2001).
[CrossRef] [PubMed]

Chen, Y.-L.

Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).

Y.-L. Chen, B. Tan, K. Baker, J. W. L. Lewis, T. Swartz, Y. Jiang, and M. Wang, “Simulation of keratoconus observation in photorefraction,” Opt. Express 14(23), 11477–11485 (2006).
[CrossRef] [PubMed]

Cheng, H. M.

H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
[CrossRef] [PubMed]

Chia, K. S.

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

Chua, W. H.

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

Clark, D.

A. Cook, S. White, M. Batterbury, and D. Clark, “Ocular growth and refractive error development in premature infants without retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(3), 953–960 (2003).
[CrossRef] [PubMed]

Cook, A.

A. Cook, S. White, M. Batterbury, and D. Clark, “Ocular growth and refractive error development in premature infants without retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(3), 953–960 (2003).
[CrossRef] [PubMed]

Dainty, C.

Donitzky, C.

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

Dubbelman, M.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Feng, B.

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci. 74(7), 489–495 (1997).
[CrossRef] [PubMed]

Frane, S. L.

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

Friedman, N. E.

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

Gabler, B.

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

Garcia, A. M.

J. B. Almeida and A. M. Garcia, “Theoretical calculation of a contact lens thickness designed to correct the eye’s monochromatic aberrations,” Optom. Vis. Sci. 82(1), 59–63 (2005).
[PubMed]

Goeckner, P. A.

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye--aging of the anterior segment,” Vision Res. 29(12), 1685–1692 (1989).
[CrossRef] [PubMed]

Goncharov, A. V.

González, L.

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[CrossRef] [PubMed]

Goss, D. A.

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci. 74(7), 489–495 (1997).
[CrossRef] [PubMed]

Grosvenor, T.

R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Ophthalmic Physiol. Opt. 13(1), 41–47 (1993).
[CrossRef] [PubMed]

Hayes, J. R.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[CrossRef] [PubMed]

Hernández-Matamoros, J. L.

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[CrossRef] [PubMed]

Herrmann, W.

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

Hong, C. Y.

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

Huber, A.

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

Jiang, Y.

Jones, L. A.

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[CrossRef] [PubMed]

Karslioglu, S.

S. Ziylan, D. Serin, and S. Karslioglu, “Myopia in preterm children at 12 to 24 months of age,” J. Pediatr. Ophthalmol. Strabismus 43(3), 152–156 (2006).
[PubMed]

Kasthurirangan, S.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[CrossRef] [PubMed]

Kaufman, P. L.

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye--aging of the anterior segment,” Vision Res. 29(12), 1685–1692 (1989).
[CrossRef] [PubMed]

Kempe, A.

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

Koretz, J. F.

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye--aging of the anterior segment,” Vision Res. 29(12), 1685–1692 (1989).
[CrossRef] [PubMed]

Kwong, K. K.

H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
[CrossRef] [PubMed]

Leach, N.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Lewis, J.

Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).

Lewis, J. W. L.

Lin, D. Y.

D. Y. Lin and E. E. Manche, “Custom-contoured ablation pattern method for the treatment of decentered laser ablations,” J. Cataract Refract. Surg. 30(8), 1675–1684 (2004).
[CrossRef] [PubMed]

Lin, W. K.

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

Liou, H. L.

Lohmann, C. P.

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

Lotmar, W.

Manche, E. E.

D. Y. Lin and E. E. Manche, “Custom-contoured ablation pattern method for the treatment of decentered laser ablations,” J. Cataract Refract. Surg. 30(8), 1675–1684 (2004).
[CrossRef] [PubMed]

Marcos, S.

Markwell, E. L.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[CrossRef] [PubMed]

Marsack, J.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

McBrien, N. A.

N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
[PubMed]

Milner, T.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Mitchell, G. L.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[CrossRef] [PubMed]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

Moeschberger, M. L.

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[CrossRef] [PubMed]

Mutti, D. O.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[CrossRef] [PubMed]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

Navarro, R.

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[CrossRef] [PubMed]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[CrossRef] [PubMed]

Neider, M. W.

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye--aging of the anterior segment,” Vision Res. 29(12), 1685–1692 (1989).
[CrossRef] [PubMed]

Nowakowski, M.

Olsen, C.

F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res. 41(21), 2799–2810 (2001).
[CrossRef] [PubMed]

Pennie, F. C.

F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res. 41(21), 2799–2810 (2001).
[CrossRef] [PubMed]

Pope, J. M.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[CrossRef] [PubMed]

Rainey, B. B.

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci. 74(7), 489–495 (1997).
[CrossRef] [PubMed]

Rios, C.

J. Castanera, A. Serra, and C. Rios, “Wavefront-guided ablation with Bausch and Lomb Zyoptix for retreatments after laser in situ keratomileusis for myopia,” J. Refract. Surg. 20(5), 439–443 (2004).
[PubMed]

Roorda, A.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Rosales, P.

Rozema, J.

J. Rozema, D. Atchison, and M. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).
[CrossRef] [PubMed]

Rylander, G.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Santamaría, J.

Saw, S. M.

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

Scott, R.

R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Ophthalmic Physiol. Opt. 13(1), 41–47 (1993).
[CrossRef] [PubMed]

Serin, D.

S. Ziylan, D. Serin, and S. Karslioglu, “Myopia in preterm children at 12 to 24 months of age,” J. Pediatr. Ophthalmol. Strabismus 43(3), 152–156 (2006).
[PubMed]

Serra, A.

J. Castanera, A. Serra, and C. Rios, “Wavefront-guided ablation with Bausch and Lomb Zyoptix for retreatments after laser in situ keratomileusis for myopia,” J. Refract. Surg. 20(5), 439–443 (2004).
[PubMed]

Sheehan, M. T.

Shi, L.

Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).

Singh, O. S.

H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
[CrossRef] [PubMed]

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[CrossRef] [PubMed]

G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86(1), 3–18 (2003).
[CrossRef] [PubMed]

Stenstrom, S.

S. Stenstrom, “Investigation of the variation and the correlation of the optical elements of human eye Part V—Chapter III (D. Woolf, Trans.),” Am. J. Optom. Arch. Am. Acad. Optom. 25, 438–449 (1948).
[PubMed]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[CrossRef] [PubMed]

Swartz, T.

Tan, B.

Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).

Y.-L. Chen, B. Tan, K. Baker, J. W. L. Lewis, T. Swartz, Y. Jiang, and M. Wang, “Simulation of keratoconus observation in photorefraction,” Opt. Express 14(23), 11477–11485 (2006).
[CrossRef] [PubMed]

Tan, D.

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

Tassignon, M.

J. Rozema, D. Atchison, and M. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).
[CrossRef] [PubMed]

Tong, L.

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Van Veen, H. G.

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci. 74(7), 489–495 (1997).
[CrossRef] [PubMed]

Wang, M.

Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).

Y.-L. Chen, B. Tan, K. Baker, J. W. L. Lewis, T. Swartz, Y. Jiang, and M. Wang, “Simulation of keratoconus observation in photorefraction,” Opt. Express 14(23), 11477–11485 (2006).
[CrossRef] [PubMed]

White, S.

A. Cook, S. White, M. Batterbury, and D. Clark, “Ocular growth and refractive error development in premature infants without retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(3), 953–960 (2003).
[CrossRef] [PubMed]

F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res. 41(21), 2799–2810 (2001).
[CrossRef] [PubMed]

Winkler von Mohrenfels, C.

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

Wood, I. C.

F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res. 41(21), 2799–2810 (2001).
[CrossRef] [PubMed]

Woods, B. T.

H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
[CrossRef] [PubMed]

Xiong, J.

H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
[CrossRef] [PubMed]

Zadnik, K.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[CrossRef] [PubMed]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

Ziylan, S.

S. Ziylan, D. Serin, and S. Karslioglu, “Myopia in preterm children at 12 to 24 months of age,” J. Pediatr. Ophthalmol. Strabismus 43(3), 152–156 (2006).
[PubMed]

Am. J. Optom. Arch. Am. Acad. Optom. (1)

S. Stenstrom, “Investigation of the variation and the correlation of the optical elements of human eye Part V—Chapter III (D. Woolf, Trans.),” Am. J. Optom. Arch. Am. Acad. Optom. 25, 438–449 (1948).
[PubMed]

Biomed. Sci. Instrum. (1)

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Clin. Exp. Optom. (1)

G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86(1), 3–18 (2003).
[CrossRef] [PubMed]

Cont. Lens Anterior Eye (1)

W. N. Charman, “Wavefront technology: past, present and future,” Cont. Lens Anterior Eye 28(2), 75–92 (2005).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
[PubMed]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[CrossRef] [PubMed]

A. Cook, S. White, M. Batterbury, and D. Clark, “Ocular growth and refractive error development in premature infants without retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(3), 953–960 (2003).
[CrossRef] [PubMed]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Vis. Sci. 46(9), 3074–3080 (2005).
[CrossRef] [PubMed]

J. Rozema, D. Atchison, and M. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).
[CrossRef] [PubMed]

Y.-L. Chen, B. Tan, L. Shi, J. Lewis, M. Wang, and K. Baker, “The shape of aging lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 4593 (2010).

J. Cataract Refract. Surg. (1)

D. Y. Lin and E. E. Manche, “Custom-contoured ablation pattern method for the treatment of decentered laser ablations,” J. Cataract Refract. Surg. 30(8), 1675–1684 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Pediatr. Ophthalmol. Strabismus (1)

S. Ziylan, D. Serin, and S. Karslioglu, “Myopia in preterm children at 12 to 24 months of age,” J. Pediatr. Ophthalmol. Strabismus 43(3), 152–156 (2006).
[PubMed]

J. Refract. Surg. (2)

C. Winkler von Mohrenfels, A. Huber, B. Gabler, W. Herrmann, A. Kempe, C. Donitzky, and C. P. Lohmann, “Wavefront-guided laser epithelial keratomileusis with the wavelight concept system 500,” J. Refract. Surg. 20(5), S565–S569 (2004).
[PubMed]

J. Castanera, A. Serra, and C. Rios, “Wavefront-guided ablation with Bausch and Lomb Zyoptix for retreatments after laser in situ keratomileusis for myopia,” J. Refract. Surg. 20(5), 439–443 (2004).
[PubMed]

J. Vis. (1)

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Ophthalmic Physiol. Opt. 13(1), 41–47 (1993).
[CrossRef] [PubMed]

Opt. Express (3)

Optom. Vis. Sci. (5)

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[CrossRef] [PubMed]

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci. 74(7), 489–495 (1997).
[CrossRef] [PubMed]

L. Tong, S. M. Saw, D. Tan, K. S. Chia, W. Y. Chan, A. Carkeet, W. H. Chua, and C. Y. Hong, “Sensitivity and specificity of visual acuity screening for refractive errors in school children,” Optom. Vis. Sci. 79(10), 650–657 (2002).
[CrossRef] [PubMed]

H. M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optom. Vis. Sci. 69(9), 698–701 (1992).
[CrossRef] [PubMed]

J. B. Almeida and A. M. Garcia, “Theoretical calculation of a contact lens thickness designed to correct the eye’s monochromatic aberrations,” Optom. Vis. Sci. 82(1), 59–63 (2005).
[PubMed]

Vision Res. (4)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

F. C. Pennie, I. C. Wood, C. Olsen, S. White, and W. N. Charman, “A longitudinal study of the biometric and refractive changes in full-term infants during the first year of life,” Vision Res. 41(21), 2799–2810 (2001).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye--aging of the anterior segment,” Vision Res. 29(12), 1685–1692 (1989).
[CrossRef] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

Other (1)

A. Gullstrand, “The optical system of the eye,” in Physiological Optics 3rd ed., H. von Helmholtz (Hamburg, Voss, 1909), 1, 350–358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Comparison of studies of age-correlation of lens thickness. The fitted curve (black) is: y(x) = 3.9-0.127x + 0.0116x2-(4.49E-4)x3 + (9.62E-6)x4-(1.15E-7)x5 + (7.14E-10)x6-(1.8E-12)x7; (b) Comparison of studies on age-dependence of equivalent refractive index.

Fig. 3
Fig. 3

Comparisons of studies of age-correlations asphericity of anterior (a) and posterior (b) lens surface. No significance of age-correlation was found in any of these studies. The conic constants on lens surfaces were free variables during the optical optimization of the customized models.

Fig. 2
Fig. 2

Comparisons of studies of age-correlations of anterior (a) and posterior (b) lens radii of curvature. The radii of curvature on lens surfaces were free variables during the optical optimization of the customized models. Anterior fitted line (black): y = 7.66 + 0.76x-(5.32E-2) x2 + (1.75E-3)x3-(3.08E-5)x4 + (2.77E-7)x5 + (9.96E-10)x6 ; Posterior fitted line: y = 5.09 + 0.234x-(9.37E-3) x2 + (1.63E-4)x3-(1.32E-6)x4 + (4.12E-9)x5.

Fig. 4
Fig. 4

RMS wavefront error of the eye models along the optical optimization steps.

Fig. 5
Fig. 5

Optimization results of the radius of curvature of anterior lens surface (left) and posterior surface (right). The lens refractive index of Dulbbelman 2001 [15] study was used in this modeling.

Fig. 6
Fig. 6

Optimization results of the radius of curvature of anterior lens surface (left) and posterior surface (right). The lens refractive index of Atchison 2008 study [14] was used in this modeling.

Fig. 7
Fig. 7

Optimization results of the radius of curvature of anterior lens surface (left) and posterior surface (right). The 35 years old lens refractive index of Atchison 2008 study [14], n = 43835, was used in this modeling.

Metrics