Abstract

The viscosity of a fluid can be measured by tracking the motion of a suspended micron-sized particle trapped by optical tweezers. However, when the particle density is high, additional particles entering the trap compromise the tracking procedure and degrade the accuracy of the measurement. In this work we introduce an additional Laguerre–Gaussian, i.e. annular, beam surrounding the trap, acting as an optical shield to exclude contaminating particles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [CrossRef] [PubMed]
  3. J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828–4830 (2002).
    [CrossRef]
  4. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
    [CrossRef]
  5. A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
    [CrossRef] [PubMed]
  6. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S71–S73 (1998).
    [CrossRef]
  7. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
    [CrossRef] [PubMed]
  8. S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
    [CrossRef] [PubMed]
  9. B. A. Nemet, Y. Shabtai, and M. Cronin-Golomb, “Imaging microscopic viscosity with confocal scanning optical tweezers,” Opt. Lett. 27, 264–266 (2002).
    [CrossRef]
  10. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
    [CrossRef] [PubMed]
  11. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  12. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  13. J. Baumgartl, T. Čižmár, M. Mazilu, V. C. Chan, A. E. Carruthers, B. A. Capron, W. McNeely, E. M. Wright, and K. Dholakia, “Optical path clearing and enhanced transmission through colloidal suspensions,” Opt. Express 18, 17130–17140 (2010).
    [CrossRef] [PubMed]
  14. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
    [CrossRef] [PubMed]
  15. M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
    [CrossRef]
  16. A. Pralle, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66, S71–S73 (1998).
    [CrossRef]
  17. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E. 76, 041507 (2007).
    [CrossRef]
  18. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897–903 (2006).
    [CrossRef] [PubMed]
  19. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
    [CrossRef] [PubMed]

2010

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

J. Baumgartl, T. Čižmár, M. Mazilu, V. C. Chan, A. E. Carruthers, B. A. Capron, W. McNeely, E. M. Wright, and K. Dholakia, “Optical path clearing and enhanced transmission through colloidal suspensions,” Opt. Express 18, 17130–17140 (2010).
[CrossRef] [PubMed]

2009

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

2008

2007

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E. 76, 041507 (2007).
[CrossRef]

2006

2004

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

2003

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

2002

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828–4830 (2002).
[CrossRef]

B. A. Nemet, Y. Shabtai, and M. Cronin-Golomb, “Imaging microscopic viscosity with confocal scanning optical tweezers,” Opt. Lett. 27, 264–266 (2002).
[CrossRef]

1998

A. Pralle, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

1997

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
[CrossRef]

1994

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef] [PubMed]

1992

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

1986

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Ashkin, A.

Baumgartl, J.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Berns, M. W.

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Capron, B. A.

Carruthers, A. E.

Chan, V. C.

Chu, S.

Cižmár, T.

Cooper, J.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897–903 (2006).
[CrossRef] [PubMed]

Cooper, J. M.

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

Courtial, J.

Cronin-Golomb, M.

Dholakia, K.

Di Leonardo, R.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

Dogterom, M.

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828–4830 (2002).
[CrossRef]

Dziedzic, J. M.

Evans, R. M. L.

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

Faivre-Moskalenko, C.

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828–4830 (2002).
[CrossRef]

Florin, E.-L.

A. Pralle, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

Gibson, G.

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897–903 (2006).
[CrossRef] [PubMed]

Gibson, G. M.

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
[CrossRef]

Heckenberg, N. R.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E. 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Hoogenboom, J. P.

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828–4830 (2002).
[CrossRef]

Hörber, J. K. H.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

A. Pralle, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

Jordan, P.

Karunwi, K.

Keen, S.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[CrossRef] [PubMed]

Knöner, G.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E. 76, 041507 (2007).
[CrossRef]

Laczik, Z.

Leach, J.

Love, G.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

Mazilu, M.

McNeely, W.

Nemet, B. A.

Nieminen, T. A.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E. 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Padgett, M.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897–903 (2006).
[CrossRef] [PubMed]

Padgett, M. J.

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[CrossRef] [PubMed]

Parkin, S. J.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E. 76, 041507 (2007).
[CrossRef]

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Pralle, A.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

A. Pralle, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

Rubinsztein-Dunlop, H.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E. 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Saunter, C.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Shabtai, Y.

Sinclair, G.

Sonek, G. J.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Stelzer, E. H. K.

A. Pralle, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Tassieri, M.

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

Thomson, L.

van Blaaderen, A.

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828–4830 (2002).
[CrossRef]

Vossen, D. L. J.

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828–4830 (2002).
[CrossRef]

Warren, R.

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Wright, A. J.

Wright, E. M.

Wright, W. H.

Wulff, K.

Yao, A.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

Yao, A. M.

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

A. Pralle, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66, S71–S73 (1998).
[CrossRef]

Appl. Phys. Lett.

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828–4830 (2002).
[CrossRef]

Biophys. J.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Curr. Opin. Colloid Interface Sci.

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
[CrossRef]

Lab Chip

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[CrossRef] [PubMed]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. E

M. Tassieri, G. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: broadband microrheology,” Phys. Rev. E 81, 026308 (2010).
[CrossRef]

Phys. Rev. E.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E. 76, 041507 (2007).
[CrossRef]

Phys. Rev. Lett.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Holographic optical tweezers. Laser beam is diffracted by the SLM which is imaged onto the back aperture of the microscope objective. A diffraction pattern (represented on the right) is displayed on the SLM to create a trapping beam surrounded by a LG beam (inset shows a not to scale illustration of this arrangement, with a particle placed in the trapping beam). The trapping plane is imaged onto a high speed camera.

Fig. 2
Fig. 2

(a) Tracked particle trajectories superimposed on an image of the experiment. White lines indicate particles in or just above the focal plane, which appear brighter in the image compared to the background. Dark lines indicate particles below the focal plane, which appear darker. The tracks appear and disappear as particles go in and out of focus. On the left is an optical trap surrounded by a optical shield, on the right is an unshielded trap. The tracks of the freely diffusing particles can be seen to enter the right hand, unshielded trap, whereas the optical shield around the left hand trap prevents such an event. (b) and (c) are images of the sample at the time of the measurements with and without a shield respectively.

Fig. 3
Fig. 3

Two examples of viscosity measurements (• points, on the left y-axis) against time, together with the standard deviation, σ, of pixel intensity (○ points, on the right y-axis). The left plot shows results taken with the shield on. Here, after around 100 seconds, the standard deviation of pixel intensity jumps to a higher value, indicating the arrival of another particle in the optical trap. The measurement of viscosity can also be seen to be altered, though not as considerably. The right plot shows results where no shield is used. The viscosity is expected to be 0.89 mPa.s.

Fig. 4
Fig. 4

Left: the length of time of successfully measuring viscosity in 500 attempts. 250 white bars indicate the use of an optical shield, whereas the 250 black bars indicated no shield was used. Right: A histogram showing the number of times the arrival of a particle in the optical trap occurred in time bins of length 7.5 seconds. The exponential fits are calculated from the mean time until contamination.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( x ) = 1 2 κ ( x ) 2 ,
A ( τ ) exp ( Γ τ ) ,

Metrics