Abstract

Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer’s Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18°C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Karalekas, “On the use of FBG sensors for measurement of curing strains in photocurable resins,” Rapid Prototyping J.14(2), 81–86 (2008).
    [CrossRef]
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
    [CrossRef]
  3. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
    [CrossRef]
  4. J. L. Zheng, R. Wang, T. Pu, L. Lu, T. Fang, Y. Su, L. Li, and X. F. Chen, “Phase-controlled superimposed FBGs and their applications in spectral-phase en/decoding,” Opt. Express19(9), 8580–8595 (2011).
    [CrossRef] [PubMed]
  5. P. Gould, “Textiles gain intelligence,” Mater. Today6(10), 38–43 (2003).
    [CrossRef]
  6. N. Butler, “Latest developments and trends in intelligent clothing revealed,” Tech. Text. Int.14(7–8), 31–36 (2005).
  7. A. P. J. Hum, “Fabric area network -a new wireless communications infrastructure to enable ubiquitous networking and sensing on intelligent clothing,” Comput. Netw.35(4), 391–399 (2001).
    [CrossRef]
  8. L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
    [CrossRef]
  9. J. B. Lee and V. Subramanian, “Weave patterned organic transistors on fiber for e-textiles,” IEEE Trans. Electron. Dev.52(2), 269–275 (2005).
    [CrossRef]
  10. J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
    [CrossRef]
  11. A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
    [CrossRef]
  12. L. T. D’Angelo, S. Weber, Y. Honda, T. Thiel, F. Narbonneau, and T. C. Luth, “A system for respiratory motion detection using optical fibers embedded into textiles,” in Engineering in Medicine and Biology Society EMBS'08 Annual International Conference of the IEEE (2008), pp. 3694–3697.
  13. J.-R. Chen, J.-M. Tseng, Y.-F. Lin, S.-Y. S. Wang, and C.-M. Shu, “Adiabatic runaway studies for methyl ethyl ketone peroxide with inorganic acids by vent sizing package 2,” Korean J. Chem. Eng.25(3), 419–422 (2008).
    [CrossRef]
  14. M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
    [CrossRef] [PubMed]
  15. R. Nielsen and B. Nielsen, “Measurement of mean skin temperature of clothed persons in cool environments,” Eur. J. Appl. Physiol. Occup. Physiol.53(3), 231–236 (1984).
    [CrossRef] [PubMed]

2012

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

2011

2009

L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
[CrossRef]

2008

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

J.-R. Chen, J.-M. Tseng, Y.-F. Lin, S.-Y. S. Wang, and C.-M. Shu, “Adiabatic runaway studies for methyl ethyl ketone peroxide with inorganic acids by vent sizing package 2,” Korean J. Chem. Eng.25(3), 419–422 (2008).
[CrossRef]

D. Karalekas, “On the use of FBG sensors for measurement of curing strains in photocurable resins,” Rapid Prototyping J.14(2), 81–86 (2008).
[CrossRef]

2005

J. B. Lee and V. Subramanian, “Weave patterned organic transistors on fiber for e-textiles,” IEEE Trans. Electron. Dev.52(2), 269–275 (2005).
[CrossRef]

N. Butler, “Latest developments and trends in intelligent clothing revealed,” Tech. Text. Int.14(7–8), 31–36 (2005).

2003

P. Gould, “Textiles gain intelligence,” Mater. Today6(10), 38–43 (2003).
[CrossRef]

2002

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

2001

A. P. J. Hum, “Fabric area network -a new wireless communications infrastructure to enable ubiquitous networking and sensing on intelligent clothing,” Comput. Netw.35(4), 391–399 (2001).
[CrossRef]

1997

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
[CrossRef]

1984

R. Nielsen and B. Nielsen, “Measurement of mean skin temperature of clothed persons in cool environments,” Eur. J. Appl. Physiol. Occup. Physiol.53(3), 231–236 (1984).
[CrossRef] [PubMed]

Au, W. M.

L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
[CrossRef]

Butler, N.

N. Butler, “Latest developments and trends in intelligent clothing revealed,” Tech. Text. Int.14(7–8), 31–36 (2005).

Chen, J.-R.

J.-R. Chen, J.-M. Tseng, Y.-F. Lin, S.-Y. S. Wang, and C.-M. Shu, “Adiabatic runaway studies for methyl ethyl ketone peroxide with inorganic acids by vent sizing package 2,” Korean J. Chem. Eng.25(3), 419–422 (2008).
[CrossRef]

Chen, X. F.

Chung, W. Y.

L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
[CrossRef]

D'Angelo, L.T.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

De Jonckheere, J.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

Depré, A.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

Fang, T.

Forsberg, C.

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

Gould, P.

P. Gould, “Textiles gain intelligence,” Mater. Today6(10), 38–43 (2003).
[CrossRef]

Grillet, A.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

Hum, A. P. J.

A. P. J. Hum, “Fabric area network -a new wireless communications infrastructure to enable ubiquitous networking and sensing on intelligent clothing,” Comput. Netw.35(4), 391–399 (2001).
[CrossRef]

Jeanne, M.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

Karalekas, D.

D. Karalekas, “On the use of FBG sensors for measurement of curing strains in photocurable resins,” Rapid Prototyping J.14(2), 81–86 (2008).
[CrossRef]

Kinet, D.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

Krebber, K.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

Lee, J. B.

J. B. Lee and V. Subramanian, “Weave patterned organic transistors on fiber for e-textiles,” IEEE Trans. Electron. Dev.52(2), 269–275 (2005).
[CrossRef]

Li, L.

J. L. Zheng, R. Wang, T. Pu, L. Lu, T. Fang, Y. Su, L. Li, and X. F. Chen, “Phase-controlled superimposed FBGs and their applications in spectral-phase en/decoding,” Opt. Express19(9), 8580–8595 (2011).
[CrossRef] [PubMed]

L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
[CrossRef]

Li, Y.

L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
[CrossRef]

Lin, Y.-F.

J.-R. Chen, J.-M. Tseng, Y.-F. Lin, S.-Y. S. Wang, and C.-M. Shu, “Adiabatic runaway studies for methyl ethyl ketone peroxide with inorganic acids by vent sizing package 2,” Korean J. Chem. Eng.25(3), 419–422 (2008).
[CrossRef]

Logier, R.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

Lu, L.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

Narbonneau, F.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

Nielsen, B.

R. Nielsen and B. Nielsen, “Measurement of mean skin temperature of clothed persons in cool environments,” Eur. J. Appl. Physiol. Occup. Physiol.53(3), 231–236 (1984).
[CrossRef] [PubMed]

Nielsen, R.

R. Nielsen and B. Nielsen, “Measurement of mean skin temperature of clothed persons in cool environments,” Eur. J. Appl. Physiol. Occup. Physiol.53(3), 231–236 (1984).
[CrossRef] [PubMed]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
[CrossRef]

paquet, B.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

Pirotte, F.

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

Pu, T.

Schukar, M.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

Shu, C.-M.

J.-R. Chen, J.-M. Tseng, Y.-F. Lin, S.-Y. S. Wang, and C.-M. Shu, “Adiabatic runaway studies for methyl ethyl ketone peroxide with inorganic acids by vent sizing package 2,” Korean J. Chem. Eng.25(3), 419–422 (2008).
[CrossRef]

Su, Y.

Subramanian, V.

J. B. Lee and V. Subramanian, “Weave patterned organic transistors on fiber for e-textiles,” IEEE Trans. Electron. Dev.52(2), 269–275 (2005).
[CrossRef]

Sund-Levander, M.

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

Thiel, T.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

Tseng, J.-M.

J.-R. Chen, J.-M. Tseng, Y.-F. Lin, S.-Y. S. Wang, and C.-M. Shu, “Adiabatic runaway studies for methyl ethyl ketone peroxide with inorganic acids by vent sizing package 2,” Korean J. Chem. Eng.25(3), 419–422 (2008).
[CrossRef]

Wahren, L. K.

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

Wan, K. M.

L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
[CrossRef]

Wang, R.

Wang, S.-Y. S.

J.-R. Chen, J.-M. Tseng, Y.-F. Lin, S.-Y. S. Wang, and C.-M. Shu, “Adiabatic runaway studies for methyl ethyl ketone peroxide with inorganic acids by vent sizing package 2,” Korean J. Chem. Eng.25(3), 419–422 (2008).
[CrossRef]

Witt, J.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

Wong, K. S.

L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
[CrossRef]

Zheng, J. L.

Comput. Netw.

A. P. J. Hum, “Fabric area network -a new wireless communications infrastructure to enable ubiquitous networking and sensing on intelligent clothing,” Comput. Netw.35(4), 391–399 (2001).
[CrossRef]

Eur. J. Appl. Physiol. Occup. Physiol.

R. Nielsen and B. Nielsen, “Measurement of mean skin temperature of clothed persons in cool environments,” Eur. J. Appl. Physiol. Occup. Physiol.53(3), 231–236 (1984).
[CrossRef] [PubMed]

IEEE Sens. J.

J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. paquet, A. Depré, L.T. D'Angelo, T. Thiel, and R. Logier, “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement,” IEEE Sens. J.12(1), 246–254 (2012).
[CrossRef]

A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depré, “Optical fiber sensors embedded into medical textile for healthcare monitoring,” IEEE Sens. J.8(7), 1215–1222 (2008).
[CrossRef]

IEEE Trans. Electron. Dev.

J. B. Lee and V. Subramanian, “Weave patterned organic transistors on fiber for e-textiles,” IEEE Trans. Electron. Dev.52(2), 269–275 (2005).
[CrossRef]

J. Lightwave Technol.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

Korean J. Chem. Eng.

J.-R. Chen, J.-M. Tseng, Y.-F. Lin, S.-Y. S. Wang, and C.-M. Shu, “Adiabatic runaway studies for methyl ethyl ketone peroxide with inorganic acids by vent sizing package 2,” Korean J. Chem. Eng.25(3), 419–422 (2008).
[CrossRef]

Mater. Today

P. Gould, “Textiles gain intelligence,” Mater. Today6(10), 38–43 (2003).
[CrossRef]

Opt. Express

Rapid Prototyping J.

D. Karalekas, “On the use of FBG sensors for measurement of curing strains in photocurable resins,” Rapid Prototyping J.14(2), 81–86 (2008).
[CrossRef]

Rev. Sci. Instrum.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
[CrossRef]

Scand. J. Caring Sci.

M. Sund-Levander, C. Forsberg, and L. K. Wahren, “Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review,” Scand. J. Caring Sci.16(2), 122–128 (2002).
[CrossRef] [PubMed]

Tech. Text. Int.

N. Butler, “Latest developments and trends in intelligent clothing revealed,” Tech. Text. Int.14(7–8), 31–36 (2005).

Text. Res. J.

L. Li, W. M. Au, Y. Li, K. M. Wan, W. Y. Chung, and K. S. Wong, “A novel design method for an intelligent clothing based on garment design and knitting,” Text. Res. J.79(18), 1670–1679 (2009).
[CrossRef]

Other

L. T. D’Angelo, S. Weber, Y. Honda, T. Thiel, F. Narbonneau, and T. C. Luth, “A system for respiratory motion detection using optical fibers embedded into textiles,” in Engineering in Medicine and Biology Society EMBS'08 Annual International Conference of the IEEE (2008), pp. 3694–3697.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Sketch of polymer package for FBG.

Fig. 2
Fig. 2

Wavelength increment and temperature for polymer-packaged FBG sensors and bare FBG sensors.

Fig. 3
Fig. 3

Spectrum of polymer-packaged FBG sensors.

Fig. 4
Fig. 4

Picture of embedment of FBG sensors into fabric, (a) Front side of the fabric, (b) Back side of fabric.

Fig. 5
Fig. 5

Schematic diagram of the demodulation system for body temperature measurement in intelligent clothing.

Fig. 6
Fig. 6

Spectrum of five series polymer-packaged FBG sensors.

Fig. 7
Fig. 7

Heat transmission model between body and clothed FBG sensors.

Fig. 8
Fig. 8

Strip-shaped micro-cell.

Fig. 9
Fig. 9

Temperature finite element model for intelligent clothing.

Fig. 10
Fig. 10

Predicting temperature distribution in intelligent clothing using ANSYS.

Tables (1)

Tables Icon

Table 1 Correlation Analysis of the Temperature Measured by FBG and Simulated by ANSYS

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

q in = q out + q d .
q in =λ2πrl t r dτ.
q out =λ2πr t r 2πλ t r dr2πλr 2 t r 2 dr r [λ(r,τ)]2πr t r dr.
q d =2πrlc( r,τ )ρ( r,τ ) t τ dτ.
r [λ(r,τ)]r t r +λ(r,τ) t r +λ(r,τ)r 2 t r 2 =c(r,τ)ρ(r,τ)r t τ .
T( r,0 )= T a ,p( r,0 )= p a .
2πrλ t r + q w1 + q bf =cρdv t τ .
2πrλ t r q w2 =cρdv t τ .
λ g =(2.438714+0.7784798× 10 2 t0.17553068× 10 5 t 2 )× 10 2 .
λ s =(2.38874+0.8798147× 10 2 t0.1150367× 10 3 t 2 )× 10 2 .
C ρ g =1005.280.260338× 10 1 t+0.6370071× 10 3 t 2 .
C ρ s =990.56+8.75522t0.39159 t 2 +0.55695 t 3 .
ρ g =1.29260.00463t+1.2619× 10 5 t 2 .
ρ s =1.236690.6238325× 10 3 t0.9965985× 10 4 t 2 .
T s = C 1 T s1 + C 2 T s2 + C n T sn .

Metrics