Abstract

The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet’s bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. White, “Weightlessness and the human body,” Sci. Am. 279(3), 58–63 (1998).
    [CrossRef] [PubMed]
  2. R. J. White and M. Averner, “Humans in space,” Nature 409(6823), 1115–1118 (2001).
    [CrossRef] [PubMed]
  3. A. Geim, “Everyone’s magnetism,” Phys. Today 51(9), 36–39 (1998).
    [CrossRef]
  4. E. Beaugnon and R. Tournier, “Levitation of organic materials,” Nature 349(6309), 470 (1991).
    [CrossRef]
  5. K. Guevorkian and J. M. Valles., “Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments,” Proc. Natl. Acad. Sci. U.S.A. 103(35), 13051–13056 (2006).
    [CrossRef] [PubMed]
  6. A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
    [CrossRef]
  7. B. E. Hammer, L. S. Kidder, P. C. Williams, and W. W. Xu, “Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity,” Microgravity Sci. Technol. 21(4), 311–318 (2009).
    [CrossRef] [PubMed]
  8. A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
    [CrossRef]
  9. A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
    [CrossRef] [PubMed]
  10. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  11. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [CrossRef] [PubMed]
  12. B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
    [CrossRef] [PubMed]
  13. C. J. Mann, L. Y. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5(1), 21 (2006).
    [CrossRef] [PubMed]
  14. C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
    [CrossRef] [PubMed]
  15. M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
    [CrossRef] [PubMed]
  16. E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
    [CrossRef]
  17. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [CrossRef] [PubMed]
  18. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
    [CrossRef] [PubMed]
  19. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-23-9361 .
    [CrossRef] [PubMed]
  20. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
    [CrossRef] [PubMed]
  21. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
    [CrossRef] [PubMed]

2012 (2)

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
[CrossRef] [PubMed]

2010 (2)

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

2009 (2)

A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
[CrossRef]

B. E. Hammer, L. S. Kidder, P. C. Williams, and W. W. Xu, “Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity,” Microgravity Sci. Technol. 21(4), 311–318 (2009).
[CrossRef] [PubMed]

2008 (3)

2006 (4)

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

C. J. Mann, L. Y. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5(1), 21 (2006).
[CrossRef] [PubMed]

K. Guevorkian and J. M. Valles., “Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments,” Proc. Natl. Acad. Sci. U.S.A. 103(35), 13051–13056 (2006).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[CrossRef] [PubMed]

2005 (2)

2001 (1)

R. J. White and M. Averner, “Humans in space,” Nature 409(6823), 1115–1118 (2001).
[CrossRef] [PubMed]

2000 (2)

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

1998 (2)

A. Geim, “Everyone’s magnetism,” Phys. Today 51(9), 36–39 (1998).
[CrossRef]

R. J. White, “Weightlessness and the human body,” Sci. Am. 279(3), 58–63 (1998).
[CrossRef] [PubMed]

1991 (1)

E. Beaugnon and R. Tournier, “Levitation of organic materials,” Nature 349(6309), 470 (1991).
[CrossRef]

Aspert, N.

Averner, M.

R. J. White and M. Averner, “Humans in space,” Nature 409(6823), 1115–1118 (2001).
[CrossRef] [PubMed]

Bauwens, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

Beaugnon, E.

E. Beaugnon and R. Tournier, “Levitation of organic materials,” Nature 349(6309), 470 (1991).
[CrossRef]

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Büchi, O.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Charrière, F.

Colomb, T.

Cuche, E.

Depeursinge, C.

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
[CrossRef] [PubMed]

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-23-9361 .
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

Di, S. M.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Egli, M.

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
[CrossRef] [PubMed]

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

Emery, Y.

Franco-Obregón, A.

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
[CrossRef] [PubMed]

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

Gao, X.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

Geim, A.

A. Geim, “Everyone’s magnetism,” Phys. Today 51(9), 36–39 (1998).
[CrossRef]

Guevorkian, K.

K. Guevorkian and J. M. Valles., “Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments,” Proc. Natl. Acad. Sci. U.S.A. 103(35), 13051–13056 (2006).
[CrossRef] [PubMed]

Hammer, B. E.

B. E. Hammer, L. S. Kidder, P. C. Williams, and W. W. Xu, “Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity,” Microgravity Sci. Technol. 21(4), 311–318 (2009).
[CrossRef] [PubMed]

Han, J.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

Hu, L. F.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Jia, B.

A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
[CrossRef]

Karch, H.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

Kemper, B.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Ketelhut, S.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

Kidder, L. S.

B. E. Hammer, L. S. Kidder, P. C. Williams, and W. W. Xu, “Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity,” Microgravity Sci. Technol. 21(4), 311–318 (2009).
[CrossRef] [PubMed]

Kim, M. K.

C. J. Mann, L. Y. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5(1), 21 (2006).
[CrossRef] [PubMed]

Kühn, J.

Langehanenberg, P.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

Li, J. B.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

Magistretti, P. J.

Mann, C. J.

C. J. Mann, L. Y. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5(1), 21 (2006).
[CrossRef] [PubMed]

Marquet, P.

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-23-9361 .
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

Montfort, F.

Müthing, J.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

Pache, C.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

Parent, J. M.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

Qian, A. R.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
[CrossRef]

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Rappaz, B.

Richard, S.

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Shang, P.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
[CrossRef]

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Tian, Z. C.

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Tournier, R.

E. Beaugnon and R. Tournier, “Levitation of organic materials,” Nature 349(6309), 470 (1991).
[CrossRef]

Toy, M. F.

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
[CrossRef] [PubMed]

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

Valles, J. M.

K. Guevorkian and J. M. Valles., “Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments,” Proc. Natl. Acad. Sci. U.S.A. 103(35), 13051–13056 (2006).
[CrossRef] [PubMed]

Vollmer, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

von Bally, G.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Wang, L.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

Wang, Z.

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Weng, Y. Y.

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Westphal, K.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

White, R. J.

R. J. White and M. Averner, “Humans in space,” Nature 409(6823), 1115–1118 (2001).
[CrossRef] [PubMed]

R. J. White, “Weightlessness and the human body,” Sci. Am. 279(3), 58–63 (1998).
[CrossRef] [PubMed]

Williams, P. C.

B. E. Hammer, L. S. Kidder, P. C. Williams, and W. W. Xu, “Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity,” Microgravity Sci. Technol. 21(4), 311–318 (2009).
[CrossRef] [PubMed]

Xu, H. Y.

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Xu, W. W.

B. E. Hammer, L. S. Kidder, P. C. Williams, and W. W. Xu, “Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity,” Microgravity Sci. Technol. 21(4), 311–318 (2009).
[CrossRef] [PubMed]

Yang, P. F.

A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
[CrossRef]

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Yin, D. C.

A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
[CrossRef]

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Yu, L. Y.

C. J. Mann, L. Y. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5(1), 21 (2006).
[CrossRef] [PubMed]

Zhang, W.

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
[CrossRef]

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Acta Astronaut. (1)

A. R. Qian, W. Zhang, Y. Y. Weng, Z. C. Tian, S. M. Di, P. F. Yang, D. C. Yin, L. F. Hu, Z. Wang, H. Y. Xu, and P. Shang, “Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions,” Acta Astronaut. 63(7-10), 929–946 (2008).
[CrossRef]

Appl. Opt. (3)

Biomed. Eng. Online (1)

C. J. Mann, L. Y. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5(1), 21 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

IEEE Trans. Appl. Supercon. (1)

A. R. Qian, D. C. Yin, P. F. Yang, B. Jia, W. Zhang, and P. Shang, “Development of a Ground-based Simulated Experimental Platform for Gravitational Biology,” IEEE Trans. Appl. Supercon. 19(2), 42–46 (2009).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

A. R. Qian, L. Wang, X. Gao, W. Zhang, L. F. Hu, J. Han, J. B. Li, S. M. Di, and P. Shang, “Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes,” IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[CrossRef] [PubMed]

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Microgravity Sci. Technol. (1)

B. E. Hammer, L. S. Kidder, P. C. Williams, and W. W. Xu, “Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity,” Microgravity Sci. Technol. 21(4), 311–318 (2009).
[CrossRef] [PubMed]

Nature (2)

R. J. White and M. Averner, “Humans in space,” Nature 409(6823), 1115–1118 (2001).
[CrossRef] [PubMed]

E. Beaugnon and R. Tournier, “Levitation of organic materials,” Nature 349(6309), 470 (1991).
[CrossRef]

Opt. Commun. (1)

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Today (1)

A. Geim, “Everyone’s magnetism,” Phys. Today 51(9), 36–39 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Guevorkian and J. M. Valles., “Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments,” Proc. Natl. Acad. Sci. U.S.A. 103(35), 13051–13056 (2006).
[CrossRef] [PubMed]

Sci. Am. (1)

R. J. White, “Weightlessness and the human body,” Sci. Am. 279(3), 58–63 (1998).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (2397 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experiment configuration of DHM-SM prototype. The diagrams of (A), (B), (C) were depicted the schematic of the DHM, PBS, polarizing beam splitter; BE, beam expander with spatial filter; λ/2, half-wave plate; O, object wave; R, reference wave; Obj, specimen; MO, microscope objective; TL, tube lens; BS, beam splitter; Inset: detail showing the off-axis geometry. The diagrams of (D), (E) were depicted the properties of the SM. (D) illustrated the distance from the bottom of SM to three apparent gravity positions, arrow represents magnetic field direction. (E) showed the gradient distribution of SM and the corresponding magnetic force field.

Fig. 2
Fig. 2

Picture of the actual experimental configurations, (a) configuration of DHM in the cavity, (b) jig designed to hold cell containers and integrate optical device.

Fig. 3
Fig. 3

Frame extracted from DHM phase image movie (Media 1) of living osteoblasts under simulated zero gravity condition for the whole experimental period.

Fig. 4
Fig. 4

Three dimensions rendering of phase images presented cell division of osteoblast under simulated zero gravity condition.

Fig. 5
Fig. 5

Three dimensions rendering of phase images presented cell division of osteoblast under normal gravity condition.

Fig. 6
Fig. 6

Real-time monitoring of the maximum phase obtained from the phase images obtained under simulated zero and normal gravity conditions, respectively.

Fig. 7
Fig. 7

Phase images showed the cell changes of osteoblast under the simulated zero gravity condition.

Fig. 8
Fig. 8

Phase images showed the cell changes of osteoblast under the normal gravity condition.

Fig. 9
Fig. 9

Phase measurements along the two cross sections (indicated in Fig.(a) and (b)) through the phase contrast images at observation time 0 h, 1h30, 3 h, and 4 h30.

Metrics