Abstract

In this work, long working distance fluorescence lifetime imaging is realized with stimulated emission in combination with electronic time delay control. Spatial coherence, as a result of stimulated emission, supports unattenuated fluorescence detection at extended distance, using low NA optics. An electronic time delayed trigger provides an advantageous way in adjusting the pulse separation and probing the fluorescence lifetime in the nanosecond ranges. The fluorescence lifetime of selected fluorophores is accurately determined through the pump-probe configuration. The characteristics and applications in fluorescence lifetime measurement of stimulated emission are investigated and summarized succinctly here.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Tsien, “Imagining imaging’s future,” Nat. Rev. Mol. Cell Biol.4(Suppl), SS16–SS21 (2003).
    [PubMed]
  2. A. Miyawaki, A. Sawano, and T. Kogure, “Lighting up cells: labeling proteins with fluorophores,” Nat. Cell Biol.5, S1–S7 (2003).
  3. A. Periasamy and R. M. Clegg, “FLIM applications in the biomedical sciences,” in FLIM Microscopy in Biology and Medicine, eds. A. Periasamy and R. M Clegg (CRC Press 2009), p. 385.
  4. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A.89(4), 1271–1275 (1992).
    [CrossRef] [PubMed]
  5. G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express12(13), 2844–2850 (2004).
    [CrossRef] [PubMed]
  6. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
    [CrossRef] [PubMed]
  7. T. Dellwig, M. R. Foreman, and F.-J. Kao, “Coherent long-distance signal detection using stimulated emission: a feasibility study,” Chin. J. Physiol.48, 873–884 (2010).
  8. T. Dellwig, P.-Y. Lin, and F.-J Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17, (in press)
  9. E. B. van Munster and T. W. J. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol.95, 143–175 (2005).
    [PubMed]
  10. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (New.York: Plenum Press, 2006)
  11. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
    [CrossRef] [PubMed]
  12. D. Li, W. Zheng, and J. Y. Qu, “Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence,” Opt. Lett.33(20), 2365–2367 (2008).
    [CrossRef] [PubMed]
  13. C. Hille, M. Lahn, H.-G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci.8(3), 319–327 (2009).
    [CrossRef] [PubMed]
  14. M. Y. Berezin, J. Kao, and S. Achilefu, “pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles,” Chemistry15(14), 3560–3566 (2009).
    [CrossRef] [PubMed]
  15. P.-Y. Lin, H.-C. Lyu, C.-Y. S. Hsu, C.-S. Chang, and F.-J. Kao, “Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy,” Biomed. Opt. Express2(1), 149–158 (2011).
    [CrossRef] [PubMed]
  16. C.-Y. Dong, P. T. C. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J.69(6), 2234–2242 (1995).
    [CrossRef] [PubMed]
  17. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010).
    [CrossRef]
  18. E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007).
    [CrossRef]
  19. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
    [CrossRef] [PubMed]
  20. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007).
    [CrossRef] [PubMed]
  21. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  22. J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
    [CrossRef] [PubMed]
  23. I. Gryczynski, S. W. Hell, and J. R. Lakowicz, “Light quenching of pyridine2 fluorescence with time-delayed pulses,” Biophys. Chem.66(1), 13–24 (1997).
    [CrossRef] [PubMed]
  24. J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express19(4), 3130–3143 (2011).
    [CrossRef] [PubMed]
  25. K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
    [CrossRef] [PubMed]

2011

2010

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

T. Dellwig, M. R. Foreman, and F.-J. Kao, “Coherent long-distance signal detection using stimulated emission: a feasibility study,” Chin. J. Physiol.48, 873–884 (2010).

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010).
[CrossRef]

2009

C. Hille, M. Lahn, H.-G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci.8(3), 319–327 (2009).
[CrossRef] [PubMed]

M. Y. Berezin, J. Kao, and S. Achilefu, “pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles,” Chemistry15(14), 3560–3566 (2009).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

2008

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

D. Li, W. Zheng, and J. Y. Qu, “Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence,” Opt. Lett.33(20), 2365–2367 (2008).
[CrossRef] [PubMed]

2007

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007).
[CrossRef] [PubMed]

E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007).
[CrossRef]

2005

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
[CrossRef] [PubMed]

E. B. van Munster and T. W. J. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol.95, 143–175 (2005).
[PubMed]

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
[CrossRef] [PubMed]

2004

2003

R. Y. Tsien, “Imagining imaging’s future,” Nat. Rev. Mol. Cell Biol.4(Suppl), SS16–SS21 (2003).
[PubMed]

A. Miyawaki, A. Sawano, and T. Kogure, “Lighting up cells: labeling proteins with fluorophores,” Nat. Cell Biol.5, S1–S7 (2003).

1997

I. Gryczynski, S. W. Hell, and J. R. Lakowicz, “Light quenching of pyridine2 fluorescence with time-delayed pulses,” Biophys. Chem.66(1), 13–24 (1997).
[CrossRef] [PubMed]

1995

C.-Y. Dong, P. T. C. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J.69(6), 2234–2242 (1995).
[CrossRef] [PubMed]

1992

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A.89(4), 1271–1275 (1992).
[CrossRef] [PubMed]

Achilefu, S.

M. Y. Berezin, J. Kao, and S. Achilefu, “pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles,” Chemistry15(14), 3560–3566 (2009).
[CrossRef] [PubMed]

Belov, V. N.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

Berezin, M. Y.

M. Y. Berezin, J. Kao, and S. Achilefu, “pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles,” Chemistry15(14), 3560–3566 (2009).
[CrossRef] [PubMed]

Bierwagen, J.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

Bückers, J.

Chang, C.-S.

Chong, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010).
[CrossRef]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Dellwig, T.

T. Dellwig, M. R. Foreman, and F.-J. Kao, “Coherent long-distance signal detection using stimulated emission: a feasibility study,” Chin. J. Physiol.48, 873–884 (2010).

T. Dellwig, P.-Y. Lin, and F.-J Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17, (in press)

Dong, C.-Y.

C.-Y. Dong, P. T. C. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J.69(6), 2234–2242 (1995).
[CrossRef] [PubMed]

Dosche, C.

C. Hille, M. Lahn, H.-G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci.8(3), 319–327 (2009).
[CrossRef] [PubMed]

Eggeling, C.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

Foreman, M. R.

T. Dellwig, M. R. Foreman, and F.-J. Kao, “Coherent long-distance signal detection using stimulated emission: a feasibility study,” Chin. J. Physiol.48, 873–884 (2010).

French, T.

C.-Y. Dong, P. T. C. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J.69(6), 2234–2242 (1995).
[CrossRef] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007).
[CrossRef] [PubMed]

Gadella, T. W. J.

E. B. van Munster and T. W. J. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol.95, 143–175 (2005).
[PubMed]

Gratton, E.

C.-Y. Dong, P. T. C. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J.69(6), 2234–2242 (1995).
[CrossRef] [PubMed]

Gryczynski, I.

I. Gryczynski, S. W. Hell, and J. R. Lakowicz, “Light quenching of pyridine2 fluorescence with time-delayed pulses,” Biophys. Chem.66(1), 13–24 (1997).
[CrossRef] [PubMed]

He, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hell, S. W.

J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express19(4), 3130–3143 (2011).
[CrossRef] [PubMed]

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
[CrossRef] [PubMed]

I. Gryczynski, S. W. Hell, and J. R. Lakowicz, “Light quenching of pyridine2 fluorescence with time-delayed pulses,” Biophys. Chem.66(1), 13–24 (1997).
[CrossRef] [PubMed]

Hille, C.

C. Hille, M. Lahn, H.-G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci.8(3), 319–327 (2009).
[CrossRef] [PubMed]

Holtom, G. R.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010).
[CrossRef]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hsu, C.-Y. S.

Huang, Z.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
[CrossRef] [PubMed]

Johnson, M. L.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A.89(4), 1271–1275 (1992).
[CrossRef] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kao, F.-J

T. Dellwig, P.-Y. Lin, and F.-J Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17, (in press)

Kao, F.-J.

P.-Y. Lin, H.-C. Lyu, C.-Y. S. Hsu, C.-S. Chang, and F.-J. Kao, “Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy,” Biomed. Opt. Express2(1), 149–158 (2011).
[CrossRef] [PubMed]

T. Dellwig, M. R. Foreman, and F.-J. Kao, “Coherent long-distance signal detection using stimulated emission: a feasibility study,” Chin. J. Physiol.48, 873–884 (2010).

Kao, J.

M. Y. Berezin, J. Kao, and S. Achilefu, “pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles,” Chemistry15(14), 3560–3566 (2009).
[CrossRef] [PubMed]

Kastrup, L.

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007).
[CrossRef] [PubMed]

Kawata, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007).
[CrossRef] [PubMed]

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007).
[CrossRef] [PubMed]

Kogure, T.

A. Miyawaki, A. Sawano, and T. Kogure, “Lighting up cells: labeling proteins with fluorophores,” Nat. Cell Biol.5, S1–S7 (2003).

Kolmakov, K.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

Lahn, M.

C. Hille, M. Lahn, H.-G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci.8(3), 319–327 (2009).
[CrossRef] [PubMed]

Lakowicz, J. R.

I. Gryczynski, S. W. Hell, and J. R. Lakowicz, “Light quenching of pyridine2 fluorescence with time-delayed pulses,” Biophys. Chem.66(1), 13–24 (1997).
[CrossRef] [PubMed]

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A.89(4), 1271–1275 (1992).
[CrossRef] [PubMed]

Li, D.

Lin, J.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
[CrossRef] [PubMed]

Lin, P.-Y.

Löhmannsröben, H.-G.

C. Hille, M. Lahn, H.-G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci.8(3), 319–327 (2009).
[CrossRef] [PubMed]

Lu, F.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
[CrossRef] [PubMed]

Lu, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010).
[CrossRef]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Lyu, H.-C.

McConnell, G.

Min, W.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010).
[CrossRef]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Miyawaki, A.

A. Miyawaki, A. Sawano, and T. Kogure, “Lighting up cells: labeling proteins with fluorophores,” Nat. Cell Biol.5, S1–S7 (2003).

Müller, V.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

Nowaczyk, K.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A.89(4), 1271–1275 (1992).
[CrossRef] [PubMed]

Periasamy, A.

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
[CrossRef] [PubMed]

Qu, J. Y.

Rankin, B. R.

E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007).
[CrossRef]

Ringemann, C.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

Rittweger, E.

E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007).
[CrossRef]

Roy, R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sawano, A.

A. Miyawaki, A. Sawano, and T. Kogure, “Lighting up cells: labeling proteins with fluorophores,” Nat. Cell Biol.5, S1–S7 (2003).

So, P. T. C.

C.-Y. Dong, P. T. C. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J.69(6), 2234–2242 (1995).
[CrossRef] [PubMed]

Szmacinski, H.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A.89(4), 1271–1275 (1992).
[CrossRef] [PubMed]

Tai, D.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
[CrossRef] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Tsien, R. Y.

R. Y. Tsien, “Imagining imaging’s future,” Nat. Rev. Mol. Cell Biol.4(Suppl), SS16–SS21 (2003).
[PubMed]

van Munster, E. B.

E. B. van Munster and T. W. J. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol.95, 143–175 (2005).
[PubMed]

Vicidomini, G.

Wallrabe, H.

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
[CrossRef] [PubMed]

Westphal, V.

E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
[CrossRef] [PubMed]

Wildanger, D.

Xie, X. S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010).
[CrossRef]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Xu, S.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
[CrossRef] [PubMed]

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007).
[CrossRef] [PubMed]

Yu, H.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
[CrossRef] [PubMed]

Zheng, W.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
[CrossRef] [PubMed]

D. Li, W. Zheng, and J. Y. Qu, “Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence,” Opt. Lett.33(20), 2365–2367 (2008).
[CrossRef] [PubMed]

Adv. Biochem. Eng. Biotechnol.

E. B. van Munster and T. W. J. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol.95, 143–175 (2005).
[PubMed]

Appl. Phys. Lett.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010).
[CrossRef]

Biomed. Opt. Express

Biophys. Chem.

I. Gryczynski, S. W. Hell, and J. R. Lakowicz, “Light quenching of pyridine2 fluorescence with time-delayed pulses,” Biophys. Chem.66(1), 13–24 (1997).
[CrossRef] [PubMed]

Biophys. J.

C.-Y. Dong, P. T. C. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J.69(6), 2234–2242 (1995).
[CrossRef] [PubMed]

Chem. Phys. Lett.

E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett.442(4-6), 483–487 (2007).
[CrossRef]

Chemistry

M. Y. Berezin, J. Kao, and S. Achilefu, “pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles,” Chemistry15(14), 3560–3566 (2009).
[CrossRef] [PubMed]

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chemistry16(1), 158–166 (2010).
[CrossRef] [PubMed]

Chin. J. Physiol.

T. Dellwig, M. R. Foreman, and F.-J. Kao, “Coherent long-distance signal detection using stimulated emission: a feasibility study,” Chin. J. Physiol.48, 873–884 (2010).

Curr. Opin. Biotechnol.

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in a bile duct ligation rat model using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16, 116024 (2011).
[CrossRef] [PubMed]

Nat. Cell Biol.

A. Miyawaki, A. Sawano, and T. Kogure, “Lighting up cells: labeling proteins with fluorophores,” Nat. Cell Biol.5, S1–S7 (2003).

Nat. Rev. Mol. Cell Biol.

R. Y. Tsien, “Imagining imaging’s future,” Nat. Rev. Mol. Cell Biol.4(Suppl), SS16–SS21 (2003).
[PubMed]

Nature

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photochem. Photobiol. Sci.

C. Hille, M. Lahn, H.-G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci.8(3), 319–327 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
[CrossRef] [PubMed]

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A.89(4), 1271–1275 (1992).
[CrossRef] [PubMed]

Science

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (New.York: Plenum Press, 2006)

A. Periasamy and R. M. Clegg, “FLIM applications in the biomedical sciences,” in FLIM Microscopy in Biology and Medicine, eds. A. Periasamy and R. M Clegg (CRC Press 2009), p. 385.

T. Dellwig, P.-Y. Lin, and F.-J Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17, (in press)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the SE enabled long working distance fluorescence lifetime imaging setup. EOM: electro optical modulator. BP: band pass filter. DM: dichroic mirror. PD: photodiode.

Fig. 2
Fig. 2

The dependences of SE signal. Power dependences on (a) the excitation and (b) stimulation beams. (c) The SE signal as a function of dye concentration, showing linear dependence. The concentration sensitivity is approximately a few μM. (d) Axial response of SE signal using a lens of 40 mm focal length.

Fig. 3
Fig. 3

Fluorescence lifetime imaging. SE signal as a function of the relative time delay between the excitation and the stimulation pulses. The decay curve is obtained from a single scan position of the sample. Shown with the decaying curve are the SE images of ATTO 647 N prepared in Y-shape microfluidic channel. The image size is 600 μm × 600 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 0 I I 0 =qexp( t d a τ ),
Δ I s exp( t d τ ),

Metrics