Abstract

We demonstrate for the first time to our knowledge a digital phase conjugation technique for generating a sharp focus point at the end of a multimode optical fiber. A sharp focus with a contrast of 1800 is experimentally obtained at the tip of a 105μm core multimode fiber. Scanning of the focal point is also demonstrated by digital means. Effects from illumination and fiber bending are addressed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  2. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56(4), 523 (1966).
    [CrossRef]
  3. H. Kogelnik and K. S. Pennington, “Holographic imaging through a random medium,” J. Opt. Soc. Am. 58(2), 273–274 (1968).
    [CrossRef]
  4. M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
    [CrossRef]
  5. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  6. C. Bellanger, A. Brignon, J. Colineau, and J. P. Huignard, “Coherent fiber combining by digital holography,” Opt. Lett. 33(24), 2937–2939 (2008).
    [CrossRef] [PubMed]
  7. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [CrossRef] [PubMed]
  8. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
    [CrossRef] [PubMed]
  9. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
    [CrossRef] [PubMed]
  10. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [CrossRef]
  11. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [CrossRef] [PubMed]
  12. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [CrossRef] [PubMed]
  13. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
    [CrossRef] [PubMed]
  14. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [CrossRef] [PubMed]
  15. A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88–89 (1976).
    [CrossRef]
  16. B. Fischer and S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46(2), 113–114 (1985).
    [CrossRef]
  17. T. Ogasawara, M. Ohno, K. Karaki, K. Nishizawa, and A. Akiba, “Image transmission with a pair of graded-index optical fibers and a BaTiO3 phase-conjugate mirror,” J. Opt. Soc. Am. B 13(10), 2193–2196 (1996).
    [CrossRef]
  18. I. McMichael, P. Yeh, and P. Beckwith, “Correction of polarization and modal scrambling in multimode fibers by phase conjugation,” Opt. Lett. 12(7), 507–509 (1987).
    [CrossRef] [PubMed]
  19. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier, and P. Georges, “Beam cleanup in a self-aligned gradient-index Brillouin cavity for high-power multimode fiber amplifiers,” Opt. Lett. 31(2), 158–160 (2006).
    [CrossRef] [PubMed]
  20. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
    [CrossRef] [PubMed]
  21. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [CrossRef] [PubMed]
  22. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
    [CrossRef] [PubMed]
  23. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [CrossRef] [PubMed]
  24. M. Paurisse, M. Hanna, F. Druon, P. Georges, C. Bellanger, A. Brignon, and J. P. Huignard, “Phase and amplitude control of a multimode LMA fiber beam by use of digital holography,” Opt. Express 17(15), 13000–13008 (2009).
    [CrossRef] [PubMed]
  25. G. S. Agarwal, A. T. Friberg, and E. Wolf, “Scattering theory of distortion correction by phase conjugation,” J. Opt. Soc. Am. 73(5), 529–537 (1983).
    [CrossRef]

2012 (2)

2011 (2)

2010 (4)

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[CrossRef] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (3)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

C. Bellanger, A. Brignon, J. Colineau, and J. P. Huignard, “Coherent fiber combining by digital holography,” Opt. Lett. 33(24), 2937–2939 (2008).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

2003 (1)

1996 (1)

1987 (1)

1985 (1)

B. Fischer and S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46(2), 113–114 (1985).
[CrossRef]

1984 (1)

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

1983 (1)

1976 (1)

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88–89 (1976).
[CrossRef]

1968 (1)

1966 (1)

Agarwal, G. S.

Akiba, A.

Beckwith, P.

Bellanger, C.

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[CrossRef] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[CrossRef] [PubMed]

Bird, D.

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Brignon, A.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Cheung, E. L.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Cižmár, T.

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Colineau, J.

Conkey, D. B.

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

Cui, M.

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Dholakia, K.

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[CrossRef] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[CrossRef] [PubMed]

Druon, F.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Fischer, B.

B. Fischer and S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46(2), 113–114 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Friberg, A. T.

Georges, P.

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Grange, R.

Gu, M.

Hanna, M.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Hsieh, C.-L.

Huignard, J. P.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Karaki, K.

Kogelnik, H.

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

Lallier, E.

Leith, E. N.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Li, X.

Lombard, L.

MacDonald, D. J.

McMichael, I.

Mosk, A. P.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[CrossRef] [PubMed]

Myaing, M. T.

Nishizawa, K.

Ogasawara, T.

Ohno, M.

Paurisse, M.

Pennington, K. S.

Piestun, R.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Psaltis, D.

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Pu, Y.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Sternklar, S.

B. Fischer and S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46(2), 113–114 (1985).
[CrossRef]

Upatnieks, J.

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[CrossRef] [PubMed]

White, J.

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

Wolf, E.

Yang, C.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yariv, A.

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88–89 (1976).
[CrossRef]

Yeh, P.

Appl. Phys. Lett. (2)

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88–89 (1976).
[CrossRef]

B. Fischer and S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46(2), 113–114 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (1)

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[CrossRef] [PubMed]

Nat. Methods (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Nat. Photonics (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (20 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental Setup. The beam is expanded by the telescope formed by lenses L1-L2 and is split in two arms with the polarizing beamsplitter BS1. The spatial filter OBJ3, pinhole and L4 expand and clean up the reference beam. The other arm is focused on the fiber tip with the objective OBJ1. The output of the fiber is imaged on the CMOS sensor through the 4f imaging system (OBJ2 and L3). The reference is combined with the image by reflecting on the non-polarizing beamsplitter BS2 generating a hologram. The phase conjugate beam is generated by the calculated phase on the SLM and the reference beam and is redirected towards the fiber by reflecting again on BS2. The quality of the generated focus can be examined by the imaging system in reflection, OBJ1 L5 on CCD2 through the non-polarizing beamsplitter BS3.

Fig. 2
Fig. 2

Focusing through a multimode fiber using digital phase conjugation. (a) Reconstructed speckle pattern at the output of the fiber as a result of a focus propagating along the multimode fiber. (b) Calculated phase. The constant linear phase contribution from the off-axis holographic setup has been removed. (c) Phase conjugated focus point at the input of the fiber. The focus is created at exactly the same position as the excitation and the contrast is calculated ~1800. (e), (f) Random phase pattern and the corresponding image at the output of the fiber. Clearly no focusing effect can be observed. The optical field propagates and again gets scrambled. (d) Profiles of the fiber input after phase conjugation along the red dashed line drawn in (c) and (f). In blue the profile after phase conjugation and in red the profile without. The beam waist of the phase-conjugated focus is 2.27µm. Without the phase conjugation the field appears as random speckles and the overall enhancement resulting from the phase conjugation is ~700 times. (d) Inset. Detail of the plot where the limits of the y-axis are set from 0 to 0.04. The white circle in (c) and (f) defines the multimode fiber core. Scale bar in (c) and (f) is 20um.

Fig. 3
Fig. 3

Center vs. edge illumination. Excitation, output speckle pattern, calculated phase and phase conjugated focus for excitation close to the edge of the fiber (a)-(d), and for excitation at the center (e)-(h). When the fiber is illuminated in the center mainly the radially symmetric modes are excited. In both cases the phase conjugation is able to generate a sharp focus point at the input of the fiber. Statistical examination of the results though, reveals that the average contrast (peak value over mean of the background) for the case of center illumination is ~920 whereas for the case of edge illumination it is ~1800. Edge illumination excites more modes in the fiber, which in turn offer a higher number of degrees of freedom for the compensation of the distortion. Scale bar in (a), (d), (e) and (h) is 20µm, the white circle defines the fiber core outline and the images are normalized to their maximum value.

Fig. 4
Fig. 4

Focusing using digital phase conjugation through a tightly bent multimode fiber. The bending induces losses on the mode propagation. The focus can still be retrieved however, phase conjugation cannot compensate for the losses, therefore the quality of the focus has deteriorated and the measured contrast is only ~400. This case is analogous to phase conjugation through an absorptive scattering medium. Scale bar in (c) is 20µm, white circle outlines the fiber core and the image is normalized to its maximum value.

Fig. 5
Fig. 5

Scanning the focus using saved phase patterns (Media 1). Different calculated phase patterns where digitally saved and then re-projected onto the fiber. Utilizing this technique we can scan the focus. In the figure above, the focus is displaced vertically (a) and horizontally (b). The capability of scanning the focus can be crucial for the implementation of an all-optical scanning endoscope. Scale bar is equal to 5μm.

Metrics