Abstract

We show that a dimer made of two gold nanospheres exhibits a remarkable efficiency for second-harmonic generation under femtosecond optical excitation. The detectable nonlinear emission for the given particle size and excitation wavelength arises when the two nanoparticles are as close as possible to contact, as in situ controlled and measured using the tip of an atomic force microscope. The excitation wavelength dependence of the second-harmonic signal supports a coupled plasmon resonance origin with radiation from the dimer gap. This nanometer-size light source might be used for high-resolution near-field optical microscopy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
    [CrossRef]
  2. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
    [CrossRef]
  3. M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
    [CrossRef] [PubMed]
  4. M. Zielinski, S. Winter, R. Kolkowski, C. Nogues, D. Oron, J. Zyss, and D. Chauvat, “Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures,” Opt. Express 19, 6657–6670 (2011).
    [CrossRef] [PubMed]
  5. L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
    [CrossRef]
  6. L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
    [CrossRef] [PubMed]
  7. C.-L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891(2009).
    [CrossRef] [PubMed]
  8. A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
    [CrossRef]
  9. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
    [CrossRef] [PubMed]
  10. V. L. Brudny, B. S. Mendoza, and W. L. Mochan, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
    [CrossRef]
  11. J. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
    [CrossRef]
  12. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
    [CrossRef] [PubMed]
  13. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
    [CrossRef]
  14. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006).
    [CrossRef]
  15. A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef] [PubMed]
  16. H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
    [CrossRef]
  17. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
    [CrossRef]
  18. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B 27, 408–416 (2010).
    [CrossRef]
  19. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [CrossRef]
  20. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
    [CrossRef]
  21. I. Romero, J. Aizpurua, G. W. Bryant, and F. D. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [CrossRef] [PubMed]
  22. A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008).
    [CrossRef] [PubMed]
  23. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
    [CrossRef] [PubMed]
  24. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164, (2010).
    [CrossRef]
  25. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
    [CrossRef] [PubMed]
  26. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
    [CrossRef] [PubMed]
  27. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  28. We use the gold dielectric constants reported in Ref. [29] for a 500–1400 nm wavelength range and we do not take into account the influence of the substrate. The two GNs are supposed to be in air and the polarization of the excitation field is linear oriented along the dimer axis.
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  30. S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
    [CrossRef] [PubMed]
  31. P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
    [CrossRef]
  32. Z. Li, T. Shegai, G. Haran, and H. Xu, “Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission,” ACS Nano 3, 637–642 (2009).
    [CrossRef] [PubMed]
  33. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]

2011

2010

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B 27, 408–416 (2010).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164, (2010).
[CrossRef]

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

2009

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[CrossRef] [PubMed]

Z. Li, T. Shegai, G. Haran, and H. Xu, “Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission,” ACS Nano 3, 637–642 (2009).
[CrossRef] [PubMed]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[CrossRef] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef] [PubMed]

C.-L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891(2009).
[CrossRef] [PubMed]

2008

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008).
[CrossRef] [PubMed]

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

2007

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

2006

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
[CrossRef]

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. D. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef] [PubMed]

2005

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
[CrossRef]

2004

J. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
[CrossRef]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

2003

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

2002

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
[CrossRef]

2000

V. L. Brudny, B. S. Mendoza, and W. L. Mochan, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aichele, T.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[CrossRef] [PubMed]

Aizpurua, J.

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Bachelier, G.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

Bai, B.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

Barth, M.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[CrossRef] [PubMed]

Benedetti, A.

Benichou, E.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
[CrossRef]

Benson, O.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[CrossRef] [PubMed]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Bertolotti, M.

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Böhmer, V.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

Bonacina, L.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Boutou, V.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 1992).

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Brevet, P.-F.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
[CrossRef]

Brudny, V. L.

V. L. Brudny, B. S. Mendoza, and W. L. Mochan, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

Bryant, G. W.

Butet, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

Canfield, B. K.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

Centini, M.

Chauvat, D.

M. Zielinski, S. Winter, R. Kolkowski, C. Nogues, D. Oron, J. Zyss, and D. Chauvat, “Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures,” Opt. Express 19, 6657–6670 (2011).
[CrossRef] [PubMed]

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef] [PubMed]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Chen, H.-Y.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Courvoisier, F.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Dadap, J.

Dadap, J. I.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006).
[CrossRef]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

Djurisic, A. B.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
[CrossRef]

Duboisset, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164, (2010).
[CrossRef]

Extermann, J.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Gacoin, T.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Galez, C.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

García de Abajo, F. D.

Ghenuche, P.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008).
[CrossRef] [PubMed]

Grange, R.

Gwo, S.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Haran, G.

Z. Li, T. Shegai, G. Haran, and H. Xu, “Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission,” ACS Nano 3, 637–642 (2009).
[CrossRef] [PubMed]

Hartschuh, A.

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Hassanzadeh, A.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

He, C.-L.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Heinz, T. F.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006).
[CrossRef]

J. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Hsieh, C.-L.

Husu, H.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164, (2010).
[CrossRef]

Johnson, J. C.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jonin, C.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
[CrossRef]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Kanehara, M.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Kauranen, M.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

Kobori, H.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Kolkowski, R.

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Kuittinen, M.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Lambert, Y.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Laukkanen, J.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

Le Dantec, R.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Le Xuan, L.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Lereu, A. L.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008).
[CrossRef] [PubMed]

Leung, Y. H.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
[CrossRef]

Li, C.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Li, Z.

Z. Li, T. Shegai, G. Haran, and H. Xu, “Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission,” ACS Nano 3, 637–642 (2009).
[CrossRef] [PubMed]

Lin, M.-H.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

Manifar, T.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

Mendoza, B. S.

V. L. Brudny, B. S. Mendoza, and W. L. Mochan, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

Mittler, S.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

Mochan, W. L.

V. L. Brudny, B. S. Mendoza, and W. L. Mochan, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

Mugnier, Y.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

Nappa, J.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
[CrossRef]

Nogues, C.

Novotny, L.

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Nyk, M.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

Oron, D.

Palomba, S.

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[CrossRef] [PubMed]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

Perruchas, S.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Petersen, P. B.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
[CrossRef]

Podoprygorina, G.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Psaltis, D.

Pu, Y.

Quidant, R.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008).
[CrossRef] [PubMed]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

Rangan, C.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Reider, G. A.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006).
[CrossRef]

Revillod, G.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
[CrossRef]

Rezaee, A.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

Roch, J.-F.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Romero, I.

Rooney, P.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

Roy, I.

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Russier-Antoine, I.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
[CrossRef]

Sanchez-Mosteiro, G.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008).
[CrossRef] [PubMed]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
[CrossRef]

Schaller, R. D.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
[CrossRef]

Schietinger, S.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[CrossRef] [PubMed]

Shan, J.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006).
[CrossRef]

J. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004).
[CrossRef]

Shegai, T.

Z. Li, T. Shegai, G. Haran, and H. Xu, “Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission,” ACS Nano 3, 637–642 (2009).
[CrossRef] [PubMed]

Sibilia, C.

Slablab, A.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Stiopkin, I.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006).
[CrossRef]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Tard, C.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Teranishi, T.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Turunen, J.

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

Van Hulst, N. F.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008).
[CrossRef] [PubMed]

Villeval, P.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Winter, S.

Wolf, J.-P.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Xu, H.

Z. Li, T. Shegai, G. Haran, and H. Xu, “Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission,” ACS Nano 3, 637–642 (2009).
[CrossRef] [PubMed]

Xu, S.

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

Yan, H.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
[CrossRef]

Yang, P.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
[CrossRef]

Yang, S.-C.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Zhou, C.

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Zielinski, M.

Zyss, J.

ACS Nano

Z. Li, T. Shegai, G. Haran, and H. Xu, “Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission,” ACS Nano 3, 637–642 (2009).
[CrossRef] [PubMed]

Appl. Phys. B

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Chem. Phys. Lett.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164, (2010).
[CrossRef]

J. Microsc.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. C

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008).
[CrossRef]

Metamaterials

H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008).
[CrossRef]

Nano Lett.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010).
[CrossRef] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002).
[CrossRef]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[CrossRef] [PubMed]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[CrossRef] [PubMed]

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[CrossRef] [PubMed]

Nature

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef] [PubMed]

Opt. Commun.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Opt. Express

Phys. Rev. A

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006).
[CrossRef]

Phys. Rev. B

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. L. Mochan, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Small

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
[CrossRef]

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009).
[CrossRef] [PubMed]

L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008).
[CrossRef] [PubMed]

Other

R. W. Boyd, Nonlinear Optics (Academic Press, 1992).

We use the gold dielectric constants reported in Ref. [29] for a 500–1400 nm wavelength range and we do not take into account the influence of the substrate. The two GNs are supposed to be in air and the polarization of the excitation field is linear oriented along the dimer axis.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a)-Experimental setup. AFM tip: Olympus, AC160TS used as purchased; MO: oil immersion microscope objective (×100, NA = 1.4); DM: dichroic mirror; FM: switchable mirror directing the collected light either to a spectrograph or to a silicon avalanche photodiode (APD). Topography measurements are done in the AFM tapping mode while the contact mode is used to perform mechanical manipulation of the GN. Optical images are recorded by scanning the sample in x and y directions while recording the emitted photons with the APD. The MO is mounted on a piezoelectric transducer in order to adjust the laser beam focus on the z-axis. (b)-When two GNs are in contact (see AFM image), a strong nonlinear emission is observed (see optical image). No emission is observed for isolated single GNs. (c)-When two isolated GNs are brought in contact using the AFM tip, an associated bright emission spot appears in the optical image.

Fig. 2
Fig. 2

Second-harmonic radiation of individual gold dimers. (a)-Emission spectrum from a gold dimer recorded for an excitation laser wavelength at λ ex = 980 nm, showing a strong SHG spectral peak and a much weaker and broader two-photon excited luminescence (TPEL). (b)-Emission spectra recorded while tuning the excitation laser wavelength λ ex from 850 to 1010 nm. (c)-FDTD simulation of the scattering cross-section of a dimer consisting of two 100 nm GNs separated by a 0.08 nm effective gap distance.

Fig. 3
Fig. 3

Polar diagrams showing the SHG efficiency as a function of the angle of the linearly-polarized excitation laser for two different dimers (see topography image). Intense lobes along the dimer axis are observed.

Fig. 4
Fig. 4

(Left panel) (a) to (d)-Topography images showing the assembly of a dimer by using the AFM tip to move one GN towards the other. (Central panel) A cross-section (red dashed line in (a)) is used to estimate the distance d between the two GNs. The SHG signal is observed only when the two GNs are in contact as shown in the insets of the cross-section graphs. (Right panel) FDTD simulation of the electromagnetic field intensity building up at the dimer gap as this gap is reduced. The gap values are those inferred from the fit of the cross-sections. In the case (d) of contact between the two spheres, a 0.08 nm value is taken in order to agree with the spectral behavior shown in Fig. 2. The simulation has been done with spherical particles of 100 nm and 80 nm in diameter, as measures topographically. Note the log-scale showing a six-order-of-magnitude increase between the two extreme values of the gap.

Fig. 5
Fig. 5

(a) SHG efficiency plotted on a log-scale as a function of the size difference h between the two GNs of an asymmetric dimer (see inset). The excitation wavelength is at λ = 990 nm and laser input mean power is (∼ 500 μW). (b) Simulation of the scattering cross-section for different values of h. Inset: Log-scale plot of the fourth power of the electric field amplitude at the dimer gap |E gap|4 as a function of h, for a constant 990 nm excitation wavelength.

Metrics