Abstract

We demonstrate capability to structure photo-polymers with sub-wavelength resolution, ∼ 200 – 500 nm, and retrieve three-dimensional (3D) structures using a picosecond laser exposure. This alternative to commonly used ultra-short femtosecond lasers extends accessability of 3D direct write. A popular hybrid sol-gel resist SZ2080 was used for quantitative determination of structuring resolution at 1064 nm and 532 nm wavelengths and for pulses of 8–25 ps duration at the repetition rates of 0.2 – 1 MHz. Systematic study of feature size dependence of 3D suspended nano-rods shows that linear power dependence of photopolymerization on the dose-per-pulse becomes dominant at higher repetition rates (≥ 0.5 MHz) while the two-photon nonlinear absorption is still distinguishable at rates lower than 0.2 MHz and shorter pulses (≤ 8 ps). Thermal accumulation defines polymerization when cooling time of the focal volume is larger than separation between pulses. Photopolymerization and its scaling mechanisms, quality, and fidelity at tight focusing of fs-, ps-, and cw-laser radiation are revealed and explained. 3D scaffolds for biomedicine and microlenses for optical applications are fabricated by the ps-laser direct write.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
    [CrossRef]
  2. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
    [CrossRef]
  3. M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
    [CrossRef]
  4. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
    [CrossRef]
  5. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra 40, 72–80 (2006).
  6. F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, “Polymerized nanotips via two-photon photopolymerization,” Opt. Express 15, 971–976 (2007).
    [CrossRef] [PubMed]
  7. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005).
    [CrossRef]
  8. I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
    [CrossRef]
  9. R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
    [CrossRef]
  10. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
    [CrossRef]
  11. M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).
  12. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
    [CrossRef]
  13. A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
    [CrossRef]
  14. M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
    [CrossRef]
  15. C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
    [CrossRef]
  16. A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).
    [CrossRef]
  17. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
    [CrossRef]
  18. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with low-cost microlaser,” Opt. Lett. 27, 1348–1350 (2002).
    [CrossRef]
  19. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
    [CrossRef]
  20. A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).
  21. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
    [CrossRef] [PubMed]
  22. S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express 17, 15308–15317 (2009).
    [CrossRef] [PubMed]
  23. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003).
    [CrossRef]
  24. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2009).
    [CrossRef]
  25. M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008).
    [CrossRef]
  26. N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
    [CrossRef]
  27. M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Banares, “Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses,” Opt. Express 19, 1516–1527 (2011).
    [CrossRef] [PubMed]
  28. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
    [CrossRef]
  29. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
    [CrossRef]
  30. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  31. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
    [CrossRef] [PubMed]
  32. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
    [CrossRef] [PubMed]
  33. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
    [CrossRef]
  34. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
    [CrossRef]

2011

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Banares, “Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses,” Opt. Express 19, 1516–1527 (2011).
[CrossRef] [PubMed]

2010

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[CrossRef]

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

2009

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2009).
[CrossRef]

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express 17, 15308–15317 (2009).
[CrossRef] [PubMed]

2008

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008).
[CrossRef]

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

2007

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).
[CrossRef]

F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, “Polymerized nanotips via two-photon photopolymerization,” Opt. Express 15, 971–976 (2007).
[CrossRef] [PubMed]

2006

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra 40, 72–80 (2006).

2005

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[CrossRef] [PubMed]

D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005).
[CrossRef]

2003

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003).
[CrossRef]

2002

2000

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

1997

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

Andraud, C.

Arai, A.

Audouard, E.

Baldeck, P. L.

Baltriukiene, D.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Banares, L.

Belazaras, K.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Beresna, M.

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008).
[CrossRef]

Bickauskaite, G.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

Bityurin, N.

A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).

Bouriau, M.

Bukelskiene, V.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Bukelskis, L.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Calvo, M. L.

Cheben, P.

Chen, Q. D.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[CrossRef]

Cheng, G.

Chichkov, B.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Chichkov, B. N.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).
[CrossRef]

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra 40, 72–80 (2006).

Chrisey, D. B.

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Danilevicius, P.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Day, D.

Dedoussis, V.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

Doraiswamy, A.

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).
[CrossRef]

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Eaton, S.

Farsari, M.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Fernandez, H.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Ferrer, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Fischer, J.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

Fotakis, C.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Gadonas, R.

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Gaidukeviciute, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Gawelda, W.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Gertus, T.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008).
[CrossRef]

Giakoumaki, A.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Gilbergs, H.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Gittard, S.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

Gong, Q.

Gray, D.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Gu, M.

Hashimoto, T.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2009).
[CrossRef]

Haverich, A.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

Herman, P.

Hernández-Garay, M. P.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Ikuta, K.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

Izquierdo, J. G.

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

Jelinek, M.

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Jin, C.

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express 17, 15308–15317 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2009).
[CrossRef]

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003).
[CrossRef]

Kamada, K.

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

Karalekas, D.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

Kawata, S.

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

Leiderer, P.

Li, Y.

Löbler, M.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

MacCraith, B. D.

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Malinauskas, M.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Marcinkevicius, A.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003).
[CrossRef]

Martineau, C.

Martínez-Matos, O.

Maruo, S.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

Matsuo, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003).
[CrossRef]

Mauclair, C.

Melissinaki, V.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

Mihailescu, I. N.

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Misawa, H.

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express 17, 15308–15317 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008).
[CrossRef]

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003).
[CrossRef]

Mishchik, K.

Miwa, M.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express 17, 15308–15317 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003).
[CrossRef]

Momot, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Morikawa, J.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2009).
[CrossRef]

Murazawa, N.

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

Nakamura, O.

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

Narayan, R.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).
[CrossRef]

Narayan, R. J.

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Nishi, Y.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Ohrt, C.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

Orie, A.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2009).
[CrossRef]

Ostendorf, A.

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra 40, 72–80 (2006).

Oubaha, M

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Ovsianikov, A.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).
[CrossRef]

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Paipulas, D.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Pikulin, A.

A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).

Piskarskas, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Puerto, D.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Purlys, V.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Qi, F.

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Reinhardt, C.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

Ruiz de la Cruz, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Rutkauskas, M.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Sakellari, I.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Schecker, O.

Scheer, E.

Schizas, C.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

Schlie, S.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

Schmitz, K.-P.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

Seet, K. K.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005).
[CrossRef]

Shah, L.

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Siegel, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Širmenis, R.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Sirvydis, V.

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Solis, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Sternberg, K.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

Stoian, R.

Sun, H. B.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[CrossRef]

T¨unnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Tan, D.

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

Tomasiunas, R.

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008).
[CrossRef]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Vamvakaki, M.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

Vaveliuk, P.

von Freymann, G.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

Waitz, R.

Wang, I.

Wegener, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Xia, H.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[CrossRef]

Yang, H.

Zhang, Y. L.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[CrossRef]

Žukauskas, A.

M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

Acta Biomater.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011).
[CrossRef]

Adv. Eng. Mater.

R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005).
[CrossRef]

Appl. Phys. B

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Appl. Phys. Lett.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2009).
[CrossRef]

Int. J. Adv. Manuf. Technol.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[CrossRef]

J. Appl. Phys.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

J. Opt.

M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Laser Chem.

A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008).
[CrossRef]

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

Nano Today

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[CrossRef]

Nanotechnology

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005).
[CrossRef]

Nat. Photonics

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[CrossRef]

Opt. Express

L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[CrossRef] [PubMed]

D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
[CrossRef] [PubMed]

F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, “Polymerized nanotips via two-photon photopolymerization,” Opt. Express 15, 971–976 (2007).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express 17, 15308–15317 (2009).
[CrossRef] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Banares, “Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses,” Opt. Express 19, 1516–1527 (2011).
[CrossRef] [PubMed]

Opt. Lett.

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with low-cost microlaser,” Opt. Lett. 27, 1348–1350 (2002).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

Photon. Spectra

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra 40, 72–80 (2006).

Phys. Rev. B

A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).

Proc. SPIE

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).
[CrossRef]

M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematics of direct write; DM - dichroic mirror coupler, OL - objective lens. (b) SEM image of 3D suspended resolution bridges: lines between supporting walls. Structures were fabricated by 532 nm/8 ps pulses at 1 MHz repetition rate under NA = 1.4 focusing; material SZ2080 with THIO photo-initiator. The irradiance at the focus is indicated.

Fig. 2
Fig. 2

Scaling mechanism of polymerization by ps-laser pulses in linear (a) and logarithmic (b) presentations. The resolution (the feature size) multiplied by the relative number of pulses per focal spot, N p = 2 w v / f, vs dose per single pulse at different repetition rates, f, and pulse durations, τp; where 2w = 1.22λ/NA is the spot size at focus, λ = 532 nm is laser wavelength, NA = 1.4 is the numerical aperture; γ is the scaling exponent of the power law, Δl = v/f is the overlap of the pulses along scan. Scanning velocity was v = 100 μm/s. The inset in (a) shows the high-resolution 3D suspended line fabricated by 8 ps pulses at 0.5 MHz; in (b) schematics of the direct write with the heat diffusion hallo region.

Fig. 4
Fig. 4

Processes of light-matter interaction and ionization: (1) Two-photon absorption, (2) multiplication of electrons via avalanche ionization, (3) linear absorption seeding the avalanche by one-photon absorption from a defect or Urbach’s tail state, (4) the avalanche rate ∝ λ2 [21] via long-wavelength seeding (process (3)). The processes shown here for electrons also take place for the holes (not shown for clarity). Ec,v effective conduction and valence band energies of photo-material.

Fig. 3
Fig. 3

Quality and fidelity of photopolymerization. (a) Qualitative comparison: SEM images of photonic crystal structures fabricated with different pulse durations and repetition rates. Scale bars, 10 μm. Arrow marks direction for the quality and fidelity increase. (b) Fidelity measure of fabrication: the fabrication window F W = P d P t h, here Pd is the optical damage power/irradiance and Pth is the polymerization threshold.

Fig. 5
Fig. 5

3D structures fabricated with 8 ps pulses at 1 MHz repetition rate: (a) a scaffold for cell growth and (b) microlens array. Structures were fabricated by 532 nm/8 ps pulses at 1 MHz repetition rate under NA = 0.65 (a) and NA = 1.4 (b) focusing, at 0.7 TW/cm2 and 0.35 TW/cm2 irradiance, respectively.

Tables (1)

Tables Icon

Table 1 Fidelity of 3D Fabricationa

Metrics