Abstract

Optical Projection Tomography (OPT) proved to be useful for the three-dimensional tracking of fluorescence signals in biological model organisms with sizes up to several millimeters. This tomographic technique detects absorption as well as fluorescence to create multimodal three-dimensional data. While the absorption of a specimen is detected very fast usually less than 0.1% of the fluorescence photons are collected. The low efficiency can result in radiation dose dependent artifacts such as photobleaching and phototoxicity. To minimize these effects as well as artifacts introduced due to the use of a CCD- or CMOS- camera-chip, we constructed a Scanning Laser Optical Tomograph (SLOT). Compared to conventional fluorescence OPT our first SLOT enhanced the photon collection efficiency a hundredfold.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
    [CrossRef] [PubMed]
  2. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003).
    [CrossRef] [PubMed]
  3. J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
    [CrossRef] [PubMed]
  4. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
    [CrossRef] [PubMed]
  5. J. Huisken and D. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
    [CrossRef] [PubMed]
  6. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
    [CrossRef]
  7. T. M. Buzug, Computed Tomography from Photon Statistics to Modern Cone-beam CT (Springer-Verlag, 2008).
  8. J. Sharpe, “Optical projection tomography,” Annu. Rev. Biomed. Eng. 6, 209–228 (2004).
    [CrossRef] [PubMed]
  9. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50, 4645–4665 (2005).
    [CrossRef] [PubMed]
  10. J. Thomas, M. Bastiani, M. B. Bate, and C. Goodman, “From grasshopper to Drosophila: a common plan for neuronal development,” Nature 310, 203–207 (1984).
    [CrossRef] [PubMed]
  11. M. Stern, S. Knipp, and G. Bicker, “Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria),” J. Comp. Neurol. 501, 38–51 (2007).
    [CrossRef] [PubMed]
  12. C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J.-L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17, 22320–22332 (2009).
    [CrossRef]
  13. S. R. M. D. Abramoff, and P. J. Magelhaes, “Image processing with imageJ,” Biophotonics Int. 11, 36–42 (2004).
  14. W. Burger and M. J. Burge, Digital Image Processing: An Algorithmic Introduction using Java (Springer Science + Business Media, 2007).
  15. J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations,” IEEE Comput. Graph. Appl. 29, 6–13 (2009).
    [CrossRef]
  16. N. Tyrer, J. Turner, and J. Altman, “Identifiable neurons in the locust central nervous system that react with antibodies to serotonin,” J. Comp. Neurol. 227, 313–330 (1984).
    [CrossRef] [PubMed]
  17. A. Vallés and K. White, “Serotonin-containing neurons in Drosophila melanogaster: development and distribution,” J. Comp. Neurol. 268, 414–428 (1988).
    [CrossRef] [PubMed]
  18. B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet -fourier filtering,” Opt. Express 17, 8567–8591 (2009).
    [CrossRef] [PubMed]
  19. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer Science + Business Media, 2006).
    [CrossRef]
  20. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52, 2775–2790 (2007).
    [CrossRef] [PubMed]
  21. R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010).
    [CrossRef]
  22. N. Krstajíc, and S. Doran, “Initial characterization of fast laser scanning optical CT apparatus for 3-D dosimetry,” Journal of Physics: Conference Series (Institute of Physics Publishing, 2009), vol. 164, page 012022.
    [CrossRef]
  23. D. W. Wilson and B. M. W. Tsui, “Noise properties of filtered-backprojection andML-EMreconstructed emission tomographic images,” IRE Trans. Nucl. Sci. 40, 1198–1203 (1993).
    [CrossRef]
  24. M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009).
    [CrossRef] [PubMed]

2010 (1)

R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010).
[CrossRef]

2009 (6)

J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations,” IEEE Comput. Graph. Appl. 29, 6–13 (2009).
[CrossRef]

J. Huisken and D. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009).
[CrossRef] [PubMed]

B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet -fourier filtering,” Opt. Express 17, 8567–8591 (2009).
[CrossRef] [PubMed]

C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J.-L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17, 22320–22332 (2009).
[CrossRef]

2007 (3)

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

M. Stern, S. Knipp, and G. Bicker, “Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria),” J. Comp. Neurol. 501, 38–51 (2007).
[CrossRef] [PubMed]

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52, 2775–2790 (2007).
[CrossRef] [PubMed]

2005 (1)

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50, 4645–4665 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Sharpe, “Optical projection tomography,” Annu. Rev. Biomed. Eng. 6, 209–228 (2004).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

S. R. M. D. Abramoff, and P. J. Magelhaes, “Image processing with imageJ,” Biophotonics Int. 11, 36–42 (2004).

2003 (1)

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003).
[CrossRef] [PubMed]

2002 (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

1993 (1)

D. W. Wilson and B. M. W. Tsui, “Noise properties of filtered-backprojection andML-EMreconstructed emission tomographic images,” IRE Trans. Nucl. Sci. 40, 1198–1203 (1993).
[CrossRef]

1988 (1)

A. Vallés and K. White, “Serotonin-containing neurons in Drosophila melanogaster: development and distribution,” J. Comp. Neurol. 268, 414–428 (1988).
[CrossRef] [PubMed]

1984 (2)

N. Tyrer, J. Turner, and J. Altman, “Identifiable neurons in the locust central nervous system that react with antibodies to serotonin,” J. Comp. Neurol. 227, 313–330 (1984).
[CrossRef] [PubMed]

J. Thomas, M. Bastiani, M. B. Bate, and C. Goodman, “From grasshopper to Drosophila: a common plan for neuronal development,” Nature 310, 203–207 (1984).
[CrossRef] [PubMed]

Abramoff, S. R. M. D.

S. R. M. D. Abramoff, and P. J. Magelhaes, “Image processing with imageJ,” Biophotonics Int. 11, 36–42 (2004).

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Altman, J.

N. Tyrer, J. Turner, and J. Altman, “Identifiable neurons in the locust central nervous system that react with antibodies to serotonin,” J. Comp. Neurol. 227, 313–330 (1984).
[CrossRef] [PubMed]

Anstey, M.

M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009).
[CrossRef] [PubMed]

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Bastiani, M.

J. Thomas, M. Bastiani, M. B. Bate, and C. Goodman, “From grasshopper to Drosophila: a common plan for neuronal development,” Nature 310, 203–207 (1984).
[CrossRef] [PubMed]

Bate, M. B.

J. Thomas, M. Bastiani, M. B. Bate, and C. Goodman, “From grasshopper to Drosophila: a common plan for neuronal development,” Nature 310, 203–207 (1984).
[CrossRef] [PubMed]

Becker, K.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Bene, F. D.

J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Bicker, G.

M. Stern, S. Knipp, and G. Bicker, “Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria),” J. Comp. Neurol. 501, 38–51 (2007).
[CrossRef] [PubMed]

Burrows, M.

M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009).
[CrossRef] [PubMed]

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Deininger, K.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Deussing, J. M.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Dodt, H. U.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Eder, M.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Feruglio, P. F.

Fexon, L.

Figueiredo, J.-L.

Goodman, C.

J. Thomas, M. Bastiani, M. B. Bate, and C. Goodman, “From grasshopper to Drosophila: a common plan for neuronal development,” Nature 310, 203–207 (1984).
[CrossRef] [PubMed]

Hecksher-Sørensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Heidrich, M.

R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010).
[CrossRef]

Heisterkamp, A.

R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010).
[CrossRef]

Henkelman, R. M.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52, 2775–2790 (2007).
[CrossRef] [PubMed]

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50, 4645–4665 (2005).
[CrossRef] [PubMed]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Hinrichs, K.

J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations,” IEEE Comput. Graph. Appl. 29, 6–13 (2009).
[CrossRef]

Huisken, J.

J. Huisken and D. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Jährling, N.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Knipp, S.

M. Stern, S. Knipp, and G. Bicker, “Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria),” J. Comp. Neurol. 501, 38–51 (2007).
[CrossRef] [PubMed]

Köster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Leischner, U.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Lorbeer, R.-A.

R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010).
[CrossRef]

Lubatschowski, H.

R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010).
[CrossRef]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Magelhaes, P. J.

S. R. M. D. Abramoff, and P. J. Magelhaes, “Image processing with imageJ,” Biophotonics Int. 11, 36–42 (2004).

Marone, F.

Mauch, C. P.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Mensmann, J.

J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations,” IEEE Comput. Graph. Appl. 29, 6–13 (2009).
[CrossRef]

Meyer, H.

R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010).
[CrossRef]

Meyer-Spradow, J.

J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations,” IEEE Comput. Graph. Appl. 29, 6–13 (2009).
[CrossRef]

Münch, B.

Nahrendorf, M.

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Ott, S.

M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009).
[CrossRef] [PubMed]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Pivovarov, M.

Pozzo, A.

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Rogers, S.

M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009).
[CrossRef] [PubMed]

Ropinski, T.

J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations,” IEEE Comput. Graph. Appl. 29, 6–13 (2009).
[CrossRef]

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Sbarbati, A.

Schierloh, A.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Sharpe, J.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52, 2775–2790 (2007).
[CrossRef] [PubMed]

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50, 4645–4665 (2005).
[CrossRef] [PubMed]

J. Sharpe, “Optical projection tomography,” Annu. Rev. Biomed. Eng. 6, 209–228 (2004).
[CrossRef] [PubMed]

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003).
[CrossRef] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Simpson, S.

M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009).
[CrossRef] [PubMed]

Sled, J. G.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52, 2775–2790 (2007).
[CrossRef] [PubMed]

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50, 4645–4665 (2005).
[CrossRef] [PubMed]

Stainier, D.

J. Huisken and D. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[CrossRef] [PubMed]

Stampanoni, M.

Stelzer, E. H. K.

J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Stern, M.

M. Stern, S. Knipp, and G. Bicker, “Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria),” J. Comp. Neurol. 501, 38–51 (2007).
[CrossRef] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Thomas, J.

J. Thomas, M. Bastiani, M. B. Bate, and C. Goodman, “From grasshopper to Drosophila: a common plan for neuronal development,” Nature 310, 203–207 (1984).
[CrossRef] [PubMed]

Trtik, P.

Tsui, B. M. W.

D. W. Wilson and B. M. W. Tsui, “Noise properties of filtered-backprojection andML-EMreconstructed emission tomographic images,” IRE Trans. Nucl. Sci. 40, 1198–1203 (1993).
[CrossRef]

Turner, J.

N. Tyrer, J. Turner, and J. Altman, “Identifiable neurons in the locust central nervous system that react with antibodies to serotonin,” J. Comp. Neurol. 227, 313–330 (1984).
[CrossRef] [PubMed]

Tyrer, N.

N. Tyrer, J. Turner, and J. Altman, “Identifiable neurons in the locust central nervous system that react with antibodies to serotonin,” J. Comp. Neurol. 227, 313–330 (1984).
[CrossRef] [PubMed]

Vallés, A.

A. Vallés and K. White, “Serotonin-containing neurons in Drosophila melanogaster: development and distribution,” J. Comp. Neurol. 268, 414–428 (1988).
[CrossRef] [PubMed]

Vinegoni, C.

C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J.-L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17, 22320–22332 (2009).
[CrossRef]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Walls, J. R.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52, 2775–2790 (2007).
[CrossRef] [PubMed]

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50, 4645–4665 (2005).
[CrossRef] [PubMed]

Weissleder, R.

White, K.

A. Vallés and K. White, “Serotonin-containing neurons in Drosophila melanogaster: development and distribution,” J. Comp. Neurol. 268, 414–428 (1988).
[CrossRef] [PubMed]

Wilson, D. W.

D. W. Wilson and B. M. W. Tsui, “Noise properties of filtered-backprojection andML-EMreconstructed emission tomographic images,” IRE Trans. Nucl. Sci. 40, 1198–1203 (1993).
[CrossRef]

Wittbrodt, J.

J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Zieglgänsberger, W.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. Sharpe, “Optical projection tomography,” Annu. Rev. Biomed. Eng. 6, 209–228 (2004).
[CrossRef] [PubMed]

Biophotonics Int. (1)

S. R. M. D. Abramoff, and P. J. Magelhaes, “Image processing with imageJ,” Biophotonics Int. 11, 36–42 (2004).

Development (1)

J. Huisken and D. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[CrossRef] [PubMed]

IEEE Comput. Graph. Appl. (1)

J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations,” IEEE Comput. Graph. Appl. 29, 6–13 (2009).
[CrossRef]

IRE Trans. Nucl. Sci. (1)

D. W. Wilson and B. M. W. Tsui, “Noise properties of filtered-backprojection andML-EMreconstructed emission tomographic images,” IRE Trans. Nucl. Sci. 40, 1198–1203 (1993).
[CrossRef]

J. Anat. (1)

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003).
[CrossRef] [PubMed]

J. Comp. Neurol. (3)

N. Tyrer, J. Turner, and J. Altman, “Identifiable neurons in the locust central nervous system that react with antibodies to serotonin,” J. Comp. Neurol. 227, 313–330 (1984).
[CrossRef] [PubMed]

A. Vallés and K. White, “Serotonin-containing neurons in Drosophila melanogaster: development and distribution,” J. Comp. Neurol. 268, 414–428 (1988).
[CrossRef] [PubMed]

M. Stern, S. Knipp, and G. Bicker, “Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria),” J. Comp. Neurol. 501, 38–51 (2007).
[CrossRef] [PubMed]

Nat. Methods (1)

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Nature (1)

J. Thomas, M. Bastiani, M. B. Bate, and C. Goodman, “From grasshopper to Drosophila: a common plan for neuronal development,” Nature 310, 203–207 (1984).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (2)

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52, 2775–2790 (2007).
[CrossRef] [PubMed]

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50, 4645–4665 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

R.-A. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE 7570, 75700F (2010).
[CrossRef]

Science (3)

M. Anstey, S. Rogers, S. Ott, M. Burrows, and S. Simpson, “Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts,” Science 323, 627–630 (2009).
[CrossRef] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Other (4)

T. M. Buzug, Computed Tomography from Photon Statistics to Modern Cone-beam CT (Springer-Verlag, 2008).

W. Burger and M. J. Burge, Digital Image Processing: An Algorithmic Introduction using Java (Springer Science + Business Media, 2007).

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer Science + Business Media, 2006).
[CrossRef]

N. Krstajíc, and S. Doran, “Initial characterization of fast laser scanning optical CT apparatus for 3-D dosimetry,” Journal of Physics: Conference Series (Institute of Physics Publishing, 2009), vol. 164, page 012022.
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (3072 KB)     
» Media 2: MOV (2339 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

OPT setups: (a) Schematic drawing of the SLOT. A laser beam is scanned through the sample. The sample is mounted in a rotatable glass capillary and then positioned in a cuvette filled with refractive index matching glycerol. Fluorescent light emitted to both sides is reflected and focused onto a PMT. Transmitted light is captured by a photo diode. (b) Schematic drawing of the used eOPT setup. Again, the sample is mounted in a rotatable glass capillary and then positioned in a cuvette filled with refractive index matching glycerol. Fluorescence is excited by an expanded laser beam perpendicular to a telecentric fluorescence imaging system.

Fig. 2
Fig. 2

Fluorescent light collection efficiency over the NA n in which n is the refractive index of the sample medium. The shaded areas indicate the practical scope of the technique.

Fig. 3
Fig. 3

Projection images of the brain of a Locusta migratoria first instar larva. The fluorescence images are inverted and contrast adjusted in a nonlinear manner. (a) Emission projection of the serotonin Cy3 staining with SLOTy. The left box (a’) shows a magnification of the black rectangle resolving serotonergic wide field neurons in the optic lobes. (b) Transmission projection at a laser wavelength of 532 nm acquired with the SLOT. (c) Emission projection of the serotonin Cy3 staining with eOPT. The right box (c’) shows a magnification of the black rectangle. The scale bars represent 300 μm.

Fig. 4
Fig. 4

Reconstructed tomographic slice through a Locusta migratoria optical lobe in a side view. (a) Filtered back projected slice of the SLOT acquisition. (b) Filtered back projected slice of the eOPT acquisition. The scale bars represent 300 μm.

Fig. 5
Fig. 5

Maximum intensity projections of inverted immunofluorescence reconstructions showing the central nervous systems of the model organisms. (a) Locusta migratoria L1 larva - Chi: chiasma, Me: medulla, La: lamina. ( Media 1 and Media 2) The encircled areas mark the optical lobe neurons described by Tyrer et al. [16]. (b) 3rd larval stage Drosophila central nervous system. (c) Locusta migratoria L3 larva with reserpine injection. The right rectangle shows a magnification of the indicated area. (d) Control with DMSO injection. The right rectangle shows a magnification of the indicated area. The scale bars represent 300 μm.

Fig. 6
Fig. 6

SNR estimated by the average standard deviation of successive points in a still image series over a horizontal line of 5 pixels. The SNRs with and without reflector are taken with the SLOT (Fig. 3a), while the OPT SNR is taken with the eOPT setup (Fig. 3c). The SNR without reflector is intensity scaled for comparability. The OPT SNR is intensity scaled too, considering a higher illumination irradiance ( eOPT : 0.110 ± 0.012 W m m 2versus SLOT : 0.086 ± 0.008 W m m 2) and effective integration times (eOPT: 2 s versus SLOT: 1.5 s) with the eOPT setup. This results in the scaling factor of 1.7. Linear fitted areas below the scatter plots in blue, yellow and orange contain 86% of the measured results. Fluorophore: Cy3; NA = 0.0367.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Eff ( NA n ) = 1 4 π 0 arcsin ( NA n ) 2 π sin ( φ ) d φ = 1 2 [ cos ( φ ) ] 0 arcsin ( NA n ) = 1 2 [ 1 cos ( arcsin ( NA n ) ) ] = 1 2 [ 1 1 ( NA n ) 2 ] .
SNR SLOTwR = ( 0.803 ± 0.038 ) I , SNR SLOTwR = ( 0.649 ± 0.032 ) I , SNR eOPT = ( 0.084 ± 0.005 ) I ,
SNR SLOTwoR SNR eOPT = 7.73 ± 0.89 ,
Eff SLOTwoR Eff eOPT = 60 ± 15 .
Eff SLOTwR Eff eOPT = 91 ± 22 .
( Eff SLOTwoR Eff eOPT ) QEcorr . = 180 ± 45 ,
( Eff SLOTwR Eff eOPT ) QEcorr . = 273 ± 66 .

Metrics