Abstract

Focusing of multimodal beams by chains of dielectric microspheres assembled directly inside the cores of hollow waveguides is studied by using numerical ray tracing. The device designs are optimized for laser surgery in contact mode with strongly absorbing tissue. By analyzing a broad range of parameters it is demonstrated that chains formed by three or five spheres with a refractive index of 1.65-1.75 provide a two-fold improvement in spatial resolution over single spheres at the cost of 0.2-0.4 attenuation in peak intensity of the central focused beam. Potential applications include ultra precise laser ablation or coagulation in the eye and brain, cellular surgery, and the coupling of light into photonic nanostructures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Rol, and P. Niederer, “High-power laser transmission through optical fibers: Applications to ophthalmology,” in Laser Applications in Medicine and Biology, M. Wolbarsht, Ed., 141–198, Plenum, New York (1991).
  2. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [CrossRef] [PubMed]
  3. T.-H. Wu, T. Teslaa, M. A. Teitell, and P.-Yu. Chiou, “Photothermal nanoblade for patterned cell membrane cutting,” Opt. Express 18(22), 23153–23160 (2010).
    [CrossRef] [PubMed]
  4. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
    [CrossRef] [PubMed]
  5. D. X. Hammer, G. D. Noojin, R. J. Thomas, C. E. Clary, B. A. Rockwell, C. A. Toth, and W. P. Roach, “Intraocular laser surgical probe for membrane disruption by laser-induced breakdown,” Appl. Opt. 36(7), 1684–1693 (1997).
    [CrossRef] [PubMed]
  6. R. M. Verdaasdonk and C. Borst, “Ray tracing of optically modified fiber tips. 1: spherical probes,” Appl. Opt. 30(16), 2159–2171 (1991).
    [CrossRef] [PubMed]
  7. K. Iwai, Y.-W. Shi, M. Endo, K. Ito, Y. Matsuura, M. Miyagi, and H. Jelinkova, “Penetration of high-intensity Er:YAG laser light emitted by IR hollow optical fibers with sealing caps in water,” Appl. Opt. 43(12), 2568–2571 (2004).
    [CrossRef] [PubMed]
  8. T. Watanabe and Y. Matsuura, “Side-firing sealing caps for hollow optical fibers,” Lasers Surg. Med. 38(8), 792–797 (2006).
    [CrossRef] [PubMed]
  9. D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
    [PubMed]
  10. J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
    [CrossRef] [PubMed]
  11. D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996).
    [PubMed]
  12. D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
    [PubMed]
  13. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comp. Theor. Nanosci. 6(9), 1979–1992 (2009).
    [CrossRef]
  14. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [CrossRef] [PubMed]
  15. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
    [CrossRef] [PubMed]
  16. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [CrossRef] [PubMed]
  17. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
    [CrossRef] [PubMed]
  18. V. N. Astratov, “Introduction: Physics and Applications of Microresonators,” Opt. Express 15(25), 17171–17457 (2007).
    [CrossRef] [PubMed]
  19. V. N. Astratov, “Fundamentals and Applications of Microsphere Resonator Circuits,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., (Springer Series in Optical Sciences 156, 2010), pp. 423–457.
  20. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
    [CrossRef]
  21. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
    [CrossRef] [PubMed]
  22. B. M. Möller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Opt. Lett. 30(16), 2116–2118 (2005).
    [CrossRef] [PubMed]
  23. A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett. 88(11), 111111 (2006).
    [CrossRef]
  24. L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036606 (2006).
    [CrossRef] [PubMed]
  25. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
    [CrossRef] [PubMed]
  26. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
    [CrossRef] [PubMed]
  27. S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
    [CrossRef]
  28. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
    [CrossRef] [PubMed]
  29. T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
    [CrossRef] [PubMed]
  30. O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
    [CrossRef]
  31. V. N. Astratov, “Focusing multimodal optical microprobe devices and methods,” International patent publication No. WO/2011/005397 (priority date 17 June 2009).
  32. V.N. Astratov, A. Darafsheh, M.D. Kerr, K.W. Allen, N.M. Fried, A.N. Antoszyk, and H.S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom. 12 March 2010.
  33. A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Integrated microsphere arrays: light focusing and propagation effects,” in Optoelectronic Integrated Circuits XII edited by L.A. Eldada, E.-H. Lee, Proc. of SPIE, vol. 7605, 9pp., Feb. 2010, paper 76050R.
  34. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Proc. of Progress in Electromagnetics Research Symposium, Cambridge, U.S.A., July 5–8, 419–423 (2010).
  35. J. A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fiber Int. Opt. 19(3), 211–227 (2000).
    [CrossRef]
  36. S. Narita, Y. Matsuura, and M. Miyagi, “Tapered hollow waveguide for focusing infrared laser beams,” Opt. Lett. 32(8), 930–932 (2007).
    [CrossRef] [PubMed]
  37. I. D. Chremmos and N. K. Uzunoglu, “Analysis of scattering by a linear chain of spherical inclusions in an optical fiber,” J. Opt. Soc. Am. A 23(12), 3054–3062 (2006).
    [CrossRef]
  38. http://www.zemax.com ZEMAX is software for optical-system design. Accessed 7 February 2010.
  39. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17(21), 19085–19092 (2009).
    [CrossRef]

2010

T.-H. Wu, T. Teslaa, M. A. Teitell, and P.-Yu. Chiou, “Photothermal nanoblade for patterned cell membrane cutting,” Opt. Express 18(22), 23153–23160 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
[CrossRef]

2009

2008

2007

2006

T. Watanabe and Y. Matsuura, “Side-firing sealing caps for hollow optical fibers,” Lasers Surg. Med. 38(8), 792–797 (2006).
[CrossRef] [PubMed]

I. D. Chremmos and N. K. Uzunoglu, “Analysis of scattering by a linear chain of spherical inclusions in an optical fiber,” J. Opt. Soc. Am. A 23(12), 3054–3062 (2006).
[CrossRef]

A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett. 88(11), 111111 (2006).
[CrossRef]

L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036606 (2006).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[CrossRef] [PubMed]

2005

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

B. M. Möller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Opt. Lett. 30(16), 2116–2118 (2005).
[CrossRef] [PubMed]

2004

2003

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

2000

J. A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fiber Int. Opt. 19(3), 211–227 (2000).
[CrossRef]

1997

1996

D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996).
[PubMed]

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

1994

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
[PubMed]

1991

1989

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[CrossRef] [PubMed]

Aouani, H.

Arbez, L.

O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
[CrossRef]

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Artemyev, M. V.

Ashili, S. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

Astratov, V. N.

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[CrossRef]

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
[CrossRef] [PubMed]

V. N. Astratov, “Introduction: Physics and Applications of Microresonators,” Opt. Express 15(25), 17171–17457 (2007).
[CrossRef] [PubMed]

A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett. 88(11), 111111 (2006).
[CrossRef]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

Backman, V.

Berton, K.

O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
[CrossRef]

Blumenkranz, M. S.

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

Bonod, N.

Borst, C.

Brazitikos, P. D.

D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996).
[PubMed]

Brooks, G. E.

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

Cai, W.

A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett. 88(11), 111111 (2006).
[CrossRef]

Chen, Z.

Chiou, P.-Yu.

Chremmos, I. D.

Clary, C. E.

D’Amico, D. J.

D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996).
[PubMed]

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

Deiss, F.

Deutsch, T. F.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[CrossRef] [PubMed]

Devilez, A.

Deych, L. I.

L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036606 (2006).
[CrossRef] [PubMed]

Endo, M.

Ferrand, P.

Finn, S. M.

D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996).
[PubMed]

Fish, G.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
[PubMed]

Flotte, T. J.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[CrossRef] [PubMed]

Franchak, J. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

Gérard, D.

Hammer, D. X.

Hara, Y.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Harrington, J. A.

J. A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fiber Int. Opt. 19(3), 211–227 (2000).
[CrossRef]

Hayashi, T.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Heifetz, A.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comp. Theor. Nanosci. 6(9), 1979–1992 (2009).
[CrossRef]

Hemo, I.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
[PubMed]

Hobart, J. L.

D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996).
[PubMed]

Honegger, T.

O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
[CrossRef]

Ikeda, N.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Ito, K.

Iwai, K.

Jelinkova, H.

Kanaev, A. V.

A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett. 88(11), 111111 (2006).
[CrossRef]

Kapitonov, A. M.

Kong, S. C.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comp. Theor. Nanosci. 6(9), 1979–1992 (2009).
[CrossRef]

Kong, S.-C.

Kuwata-Gonokami, M.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Lavin, M. J.

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

Lecarme, O.

O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
[CrossRef]

Lewis, A.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
[PubMed]

Marcellino, G. R.

D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996).
[PubMed]

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

Matsuura, Y.

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Mitsui, T.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

Miyagi, M.

Möller, B. M.

Mukaiyama, T.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Narita, S.

Noojin, G. D.

Oikawa, H.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

Onodera, T.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

Palanker, D.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
[PubMed]

Pallikaris, I. G.

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

Peyrade, D.

O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
[CrossRef]

Pianta, M.

Pinedo Rivera, T.

O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
[CrossRef]

Popov, E.

Quiroz-Mercado, H.

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Rigneault, H.

Roach, W. P.

Rockwell, B. A.

Roslyak, O.

L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036606 (2006).
[CrossRef] [PubMed]

Sahakian, A.

Sahakian, A. V.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comp. Theor. Nanosci. 6(9), 1979–1992 (2009).
[CrossRef]

Shi, Y.-W.

Sojic, N.

Stout, B.

Sugimoto, Y.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Taflove, A.

Takamasu, T.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Takaya, Y.

Takeda, K.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Teitell, M. A.

Teslaa, T.

Thomas, R. J.

Toth, C. A.

Turovets, I.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
[PubMed]

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Uzunoglu, N. K.

Verdaasdonk, R. M.

Wakayama, Y.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

Walsh, J. T.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[CrossRef] [PubMed]

Watanabe, T.

T. Watanabe and Y. Matsuura, “Side-firing sealing caps for hollow optical fibers,” Lasers Surg. Med. 38(8), 792–797 (2006).
[CrossRef] [PubMed]

Wenger, J.

Woggon, U.

Wu, T.-H.

Yang, S.

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[CrossRef]

Zauberman, H.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
[PubMed]

Adv. Mater.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Am. J. Ophthalmol.

D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996).
[PubMed]

Appl. Opt.

Appl. Phys. Lett.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett. 88(11), 111111 (2006).
[CrossRef]

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[CrossRef]

Fiber Int. Opt.

J. A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fiber Int. Opt. 19(3), 211–227 (2000).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994).
[PubMed]

J Comp. Theor. Nanosci.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comp. Theor. Nanosci. 6(9), 1979–1992 (2009).
[CrossRef]

J. Biomed. Opt.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010).
[CrossRef]

Lasers Surg. Med.

T. Watanabe and Y. Matsuura, “Side-firing sealing caps for hollow optical fibers,” Lasers Surg. Med. 38(8), 792–797 (2006).
[CrossRef] [PubMed]

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[CrossRef] [PubMed]

Nat. Nanotechnol.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Ophthalmology

D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996).
[PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036606 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Other

http://www.zemax.com ZEMAX is software for optical-system design. Accessed 7 February 2010.

V. N. Astratov, “Focusing multimodal optical microprobe devices and methods,” International patent publication No. WO/2011/005397 (priority date 17 June 2009).

V.N. Astratov, A. Darafsheh, M.D. Kerr, K.W. Allen, N.M. Fried, A.N. Antoszyk, and H.S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom. 12 March 2010.

A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Integrated microsphere arrays: light focusing and propagation effects,” in Optoelectronic Integrated Circuits XII edited by L.A. Eldada, E.-H. Lee, Proc. of SPIE, vol. 7605, 9pp., Feb. 2010, paper 76050R.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Proc. of Progress in Electromagnetics Research Symposium, Cambridge, U.S.A., July 5–8, 419–423 (2010).

P. Rol, and P. Niederer, “High-power laser transmission through optical fibers: Applications to ophthalmology,” in Laser Applications in Medicine and Biology, M. Wolbarsht, Ed., 141–198, Plenum, New York (1991).

V. N. Astratov, “Fundamentals and Applications of Microsphere Resonator Circuits,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., (Springer Series in Optical Sciences 156, 2010), pp. 423–457.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Ray tracing inside the three-sphere (n=1.7) focusing microprobe, (b) schematic of the surface of the fiber core with the rays starting at random points, (c) intensity profiles calculated for a single sphere with n=1.7 as a function of the fiber to sphere distance (d).

Fig. 2
Fig. 2

Ray tracing for a single (a) 300 µm and (b) 150 µm sphere with n=1.9 in contact with the core of the multimode fiber. (c) Calculated FWHM of the central intensity peaks as a function of n for two structures shown in (a) and (b), respectively.

Fig. 3
Fig. 3

(a) Single sphere device and intensity distributions for (b) n=1.675 and (c) 1.75. (d) Calculated FWHM of the central intensity peaks as a function of n. (e) Five-sphere device and intensity distributions for (f) n=1.675 and (g) 1.75.

Fig. 4
Fig. 4

Comparison of (a) efficiency (η) of coupling of incident power to the central focused beam and (b) peak intensity (I f) of the focused beam for microprobes formed by single, three, and five spheres.

Metrics