Abstract

A novel voltage interrogation method using electro-optically tunable waveguide-coupled surface plasmon resonance sensors is demonstrated. Before measurements, we use a bicell photodetector to detect the reflectance from the sensor and take the differential signal from the photodetector as the resonance condition. For different analytes, by scanning the DC voltage on the waveguide layer of the sensor chip, the resonance condition can be maintained the same. Under this condition, we record the values of this voltage, namely the resonant voltage. Theoretical calculations and experimental results show the resonant voltage has a highly linear and sensitive response to analyte’s refractive index. This method is simple in configuration, and complicated signal processing algorithms can be avoided.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  2. B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with and extended coupling matrix and surface plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
    [CrossRef]
  3. L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
    [CrossRef]
  4. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  5. K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu, “Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensors,” Opt. Express 17(6), 4468–4478 (2009).
    [CrossRef] [PubMed]
  6. N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
    [CrossRef]
  7. J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
    [CrossRef]
  8. J. N. Yih, F. C. Chien, C. Y. Lin, H. F. Yau, and S. J. Chen, “Angular-interrogation attenuated total reflection metrology system for plasmonic sensors,” Appl. Opt. 44(29), 6155–6162 (2005).
    [CrossRef] [PubMed]
  9. X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
    [CrossRef]
  10. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
    [CrossRef]
  11. J. Gu, G. Chen, Z. Cao, and Q. Shen, “An intensity measurement refractometer based on a symmetric metal-clad waveguide structure,” J. Phys. D 41(18), 185105 (2008).
    [CrossRef]
  12. L. N. Aksyutov, “Temperature dependence of the optical constants of tungsten and gold,” J. Appl. Spectrosc. 26(5), 656–660 (1977).
    [CrossRef]
  13. A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
    [CrossRef] [PubMed]

2010 (1)

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

2009 (1)

2008 (2)

J. Gu, G. Chen, Z. Cao, and Q. Shen, “An intensity measurement refractometer based on a symmetric metal-clad waveguide structure,” J. Phys. D 41(18), 185105 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

1999 (1)

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

1993 (1)

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with and extended coupling matrix and surface plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

1990 (1)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[CrossRef]

1988 (1)

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

1977 (1)

L. N. Aksyutov, “Temperature dependence of the optical constants of tungsten and gold,” J. Appl. Spectrosc. 26(5), 656–660 (1977).
[CrossRef]

Acaite, J.

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

Aksyutov, L. N.

L. N. Aksyutov, “Temperature dependence of the optical constants of tungsten and gold,” J. Appl. Spectrosc. 26(5), 656–660 (1977).
[CrossRef]

Arechabaleta, R. A.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Baltrus, J. P.

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

Boussaad, S.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Cao, Z.

J. Gu, G. Chen, Z. Cao, and Q. Shen, “An intensity measurement refractometer based on a symmetric metal-clad waveguide structure,” J. Phys. D 41(18), 185105 (2008).
[CrossRef]

Castrop, J.

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

Chen, G.

J. Gu, G. Chen, Z. Cao, and Q. Shen, “An intensity measurement refractometer based on a symmetric metal-clad waveguide structure,” J. Phys. D 41(18), 185105 (2008).
[CrossRef]

Chen, S. J.

J. N. Yih, F. C. Chien, C. Y. Lin, H. F. Yau, and S. J. Chen, “Angular-interrogation attenuated total reflection metrology system for plasmonic sensors,” Appl. Opt. 44(29), 6155–6162 (2005).
[CrossRef] [PubMed]

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

Chien, F. C.

Chua, C. S.

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

Chyou, J. J.

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

D’Agnese, J.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Fan, J.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

Gu, J.

J. Gu, G. Chen, Z. Cao, and Q. Shen, “An intensity measurement refractometer based on a symmetric metal-clad waveguide structure,” J. Phys. D 41(18), 185105 (2008).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Huang, K. T.

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

Huang, W. L.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Kausaite, A.

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

Liedberg, B.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with and extended coupling matrix and surface plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lin, C. Y.

J. N. Yih, F. C. Chien, C. Y. Lin, H. F. Yau, and S. J. Chen, “Angular-interrogation attenuated total reflection metrology system for plasmonic sensors,” Appl. Opt. 44(29), 6155–6162 (2005).
[CrossRef] [PubMed]

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

Lundstrom, I.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with and extended coupling matrix and surface plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Ma, X.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Ramanaviciene, A.

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

Ramanavicius, A.

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

Shen, Q.

J. Gu, G. Chen, Z. Cao, and Q. Shen, “An intensity measurement refractometer based on a symmetric metal-clad waveguide structure,” J. Phys. D 41(18), 185105 (2008).
[CrossRef]

Shih, Z. H.

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

Shu, S. F.

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

Song, L.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu, “Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensors,” Opt. Express 17(6), 4468–4478 (2009).
[CrossRef] [PubMed]

Stenberg, E.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with and extended coupling matrix and surface plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

Su, Y.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu, “Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensors,” Opt. Express 17(6), 4468–4478 (2009).
[CrossRef] [PubMed]

Tao, N. J.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[CrossRef]

Uttamchandani, D.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

van Dijk, M.

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

Wang, K.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu, “Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensors,” Opt. Express 17(6), 4468–4478 (2009).
[CrossRef] [PubMed]

Wang, Z.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu, “Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensors,” Opt. Express 17(6), 4468–4478 (2009).
[CrossRef] [PubMed]

Xu, X.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

Yau, H. F.

Yih, J. N.

Zhang, L. M.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

Zhang, R.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

Zheng, Z.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu, “Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensors,” Opt. Express 17(6), 4468–4478 (2009).
[CrossRef] [PubMed]

Zhu, J.

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu, “Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensors,” Opt. Express 17(6), 4468–4478 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[CrossRef]

Biochem. Mol. Biol. Educ. (1)

A. Kausaite, M. van Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem. Mol. Biol. Educ. 35(1), 57–63 (2007).
[CrossRef] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Electron. Lett. (1)

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

J. Appl. Spectrosc. (1)

L. N. Aksyutov, “Temperature dependence of the optical constants of tungsten and gold,” J. Appl. Spectrosc. 26(5), 656–660 (1977).
[CrossRef]

J. Phys. D (1)

J. Gu, G. Chen, Z. Cao, and Q. Shen, “An intensity measurement refractometer based on a symmetric metal-clad waveguide structure,” J. Phys. D 41(18), 185105 (2008).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

J. J. Chyou, C. S. Chua, Z. H. Shih, C. Y. Lin, K. T. Huang, S. J. Chen, and S. F. Shu, “High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” Proc. SPIE 5211, 197–206 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Sen. Actuators A (1)

X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, and J. Zhu, “Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors,” Sen. Actuators A 157(1), 9–14 (2010).
[CrossRef]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Sens. Actuators B Chem. (1)

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with and extended coupling matrix and surface plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Distribution of the reflectance from the WCSPR sensor on the bicell photodetector.

Fig. 2
Fig. 2

Experiment setup for differential intensity based tunable detection. P, ZF3 prism; S, ZF3 substrate glass; U, upper gold layer; L, lower gold layer; W, waveguide layer.

Fig. 3
Fig. 3

Angular dependent response of the WCSPR sensor for glucose of 0.4 wt% concentration.

Fig. 4
Fig. 4

(a) Angular shift response of the WCSPR sensor chip to glucose solution of different concentration;(b) Angular shift response of the WCSPR to the DC voltage applied with deionized water as the analyte.

Fig. 5
Fig. 5

Resonant voltages for glucose solutions of different concentrations.

Fig. 6
Fig. 6

Long term stability of measured resonant voltage of deionized water.

Fig. 7
Fig. 7

Real-time resonant voltage measurement of protein-protein binding of different concentrations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S A = I R(θ, n 2 , n 4 ) + II R(θ, n 2 , n 4 ) , S B = II R(θ, n 2 , n 4 ) + III R(θ, n 2 , n 4 )
I 1 = I R(θ, n 2 , n 4 ) III R(θ, n 2 , n 4 )
S A = I R(θ, n 2 +Δ n 2 , n 4 +Δ n 4 ) + II R(θ, n 2 +Δ n 2 , n 4 +Δ n 4 )
S B = II R(θ, n 2 +Δ n 2 , n 4 +Δ n 4 ) + III R(θ, n 2 +Δ n 2 , n 4 +Δ n 4 )
I 2 = I R(θ, n 2 +Δ n 2 , n 4 +Δ n 4 ) III R(θ, n 2 +Δ n 2 , n 4 +Δ n 4 )
I 2 = I [R(θ, n 2 , n 4 )+Δ n 2 R n 2 | n 2 , n 4 +Δ n 4 R n 4 | n 2 , n 4 ] III [R(θ, n 2 , n 4 )+Δ n 2 R n 2 | n 2 , n 4 +Δ n 4 R n 4 | n 2 , n 4 ] = I 1 + I (Δ n 2 R n 2 | n 2 , n 4 +Δ n 4 R n 4 | n 2 , n 4 ) III (Δ n 2 R n 2 | n 2 , n 4 +Δ n 4 R n 4 | n 2 , n 4 )
S j, n k = R n k | n 2 , n 4 (j=I,III,k=2,4)
Δ n 2 = 1 2 n 2 3 V DC d 2 r 33
S 2d2 r 33 n 2 3 I S I, n 4 III S III, n 4 I S I, n 2 III S III, n 2

Metrics