Abstract

A simple yet accurate parameterization of spectral and broadband ocean surface albedo has been developed. To facilitate the parameterization and its applications, the albedo is parameterized for the direct and diffuse incident radiation separately, and then each of them is further divided into two components: the contributions from surface and water, respectively. The four albedo components are independent of each other, hence, altering one will not affect the others. Such a designed parameterization scheme is flexible for any future update. Users can simply replace any of the adopted empirical formulations (e.g., the relationship between foam reflectance and wind speed) as desired without a need to change the parameterization scheme. The parameterization is validated by in situ measurements and can be easily implemented into a climate or radiative transfer model.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, “Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface,” Appl. Opt. 45(28), 7443–7455 (2006).
    [CrossRef] [PubMed]
  2. B. P. Briegleb, P. Minnis, V. Ramanathan, and E. Harrison, “Comparison of regional clear-sky albedos inferred from satellite observations and model computations,” J. Clim. Appl. Meteorol. 25(2), 214–226 (1986).
    [CrossRef]
  3. J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
    [CrossRef]
  4. J. P. Taylor, J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, “Studies with a flexible new radiation code. II: Comparisons with aircraft shortwave observations,” Q. J. R. Metro, Soc. 122, 839–861 (1996).
  5. Z. Jin, T. Charlock, W. Smith, and K. Rutledge, “A parameterization of ocean surface albedo.” Geophys. Res. Let. 31, L22301, doi:.
    [CrossRef]
  6. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [CrossRef]
  7. E. Hecht, Optics, Second Edition (Addison Wesley, 1990).
  8. D. A. Freedman, Statistical Models: Theory and Practice (Cambridge University Press, 2005).
  9. M. G. Robert, Second-Semester Applied Statistics (Kendall/Hunt Publishing Company, 2004).
  10. H. C. Van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications (Academic Press, 1980).
  11. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
    [CrossRef]
  12. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
    [CrossRef]
  13. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30(30), 4427–4438 (1991).
    [CrossRef] [PubMed]
  14. P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23(11), 1816–1824 (1984).
    [CrossRef] [PubMed]
  15. R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14,361–14,371 (1996), doi:.
    [CrossRef]
  16. K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000), doi:.
    [CrossRef]
  17. C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
    [CrossRef]
  18. Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

2006 (2)

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, “Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface,” Appl. Opt. 45(28), 7443–7455 (2006).
[CrossRef] [PubMed]

2005 (1)

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

2001 (1)

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

2000 (1)

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000), doi:.
[CrossRef]

1996 (2)

J. P. Taylor, J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, “Studies with a flexible new radiation code. II: Comparisons with aircraft shortwave observations,” Q. J. R. Metro, Soc. 122, 839–861 (1996).

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14,361–14,371 (1996), doi:.
[CrossRef]

1991 (1)

1986 (1)

B. P. Briegleb, P. Minnis, V. Ramanathan, and E. Harrison, “Comparison of regional clear-sky albedos inferred from satellite observations and model computations,” J. Clim. Appl. Meteorol. 25(2), 214–226 (1986).
[CrossRef]

1984 (2)

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[CrossRef]

P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23(11), 1816–1824 (1984).
[CrossRef] [PubMed]

1983 (1)

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

1954 (1)

Briegleb, B. P.

B. P. Briegleb, P. Minnis, V. Ramanathan, and E. Harrison, “Comparison of regional clear-sky albedos inferred from satellite observations and model computations,” J. Clim. Appl. Meteorol. 25(2), 214–226 (1986).
[CrossRef]

Charlock, T.

Z. Jin, T. Charlock, W. Smith, and K. Rutledge, “A parameterization of ocean surface albedo.” Geophys. Res. Let. 31, L22301, doi:.
[CrossRef]

Charlock, T. P.

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, “Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface,” Appl. Opt. 45(28), 7443–7455 (2006).
[CrossRef] [PubMed]

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Cota, G.

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Cox, C.

Denn, F. M.

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Deschamps, P.-Y.

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14,361–14,371 (1996), doi:.
[CrossRef]

Edwards, J. M.

J. P. Taylor, J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, “Studies with a flexible new radiation code. II: Comparisons with aircraft shortwave observations,” Q. J. R. Metro, Soc. 122, 839–861 (1996).

Fabbri, B. E.

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Frouin, R.

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14,361–14,371 (1996), doi:.
[CrossRef]

Gentili, B.

Glew, M. D.

J. P. Taylor, J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, “Studies with a flexible new radiation code. II: Comparisons with aircraft shortwave observations,” Q. J. R. Metro, Soc. 122, 839–861 (1996).

Gordon, H. R.

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000), doi:.
[CrossRef]

Hansen, J. G.

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Harrison, E.

B. P. Briegleb, P. Minnis, V. Ramanathan, and E. Harrison, “Comparison of regional clear-sky albedos inferred from satellite observations and model computations,” J. Clim. Appl. Meteorol. 25(2), 214–226 (1986).
[CrossRef]

Hignett, P.

J. P. Taylor, J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, “Studies with a flexible new radiation code. II: Comparisons with aircraft shortwave observations,” Q. J. R. Metro, Soc. 122, 839–861 (1996).

Jin, Z.

Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, “Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface,” Appl. Opt. 45(28), 7443–7455 (2006).
[CrossRef] [PubMed]

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Z. Jin, T. Charlock, W. Smith, and K. Rutledge, “A parameterization of ocean surface albedo.” Geophys. Res. Let. 31, L22301, doi:.
[CrossRef]

Kahn, R.

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Kirk, J. T. O.

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[CrossRef]

Knapp, R. J.

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Koepke, P.

Lacis, A.

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Lebedeff, S.

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Madigan, J. J.

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Maritorena, S.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

Minnis, P.

B. P. Briegleb, P. Minnis, V. Ramanathan, and E. Harrison, “Comparison of regional clear-sky albedos inferred from satellite observations and model computations,” J. Clim. Appl. Meteorol. 25(2), 214–226 (1986).
[CrossRef]

Moore, K. D.

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000), doi:.
[CrossRef]

Morel, A.

Munk, W.

Ramanathan, V.

B. P. Briegleb, P. Minnis, V. Ramanathan, and E. Harrison, “Comparison of regional clear-sky albedos inferred from satellite observations and model computations,” J. Clim. Appl. Meteorol. 25(2), 214–226 (1986).
[CrossRef]

Redemann, J.

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Rind, D.

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Rose, F.

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Ruedy, R.

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Russell, D.

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Rutan, D. A.

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Rutledge, C. K.

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Rutledge, K.

Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, “Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface,” Appl. Opt. 45(28), 7443–7455 (2006).
[CrossRef] [PubMed]

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Z. Jin, T. Charlock, W. Smith, and K. Rutledge, “A parameterization of ocean surface albedo.” Geophys. Res. Let. 31, L22301, doi:.
[CrossRef]

Schuster, G. L.

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Schwindling, M.

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14,361–14,371 (1996), doi:.
[CrossRef]

Slingo, A.

J. P. Taylor, J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, “Studies with a flexible new radiation code. II: Comparisons with aircraft shortwave observations,” Q. J. R. Metro, Soc. 122, 839–861 (1996).

Smith, W.

Z. Jin, T. Charlock, W. Smith, and K. Rutledge, “A parameterization of ocean surface albedo.” Geophys. Res. Let. 31, L22301, doi:.
[CrossRef]

Smith, W. L.

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

Stamnes, K.

Stone, P.

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Taylor, J. P.

J. P. Taylor, J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, “Studies with a flexible new radiation code. II: Comparisons with aircraft shortwave observations,” Q. J. R. Metro, Soc. 122, 839–861 (1996).

Travis, L.

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Voss, K. J.

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000), doi:.
[CrossRef]

Wang, Y.

Zhang, T.

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

Appl. Opt. (3)

Bull. Am. Meteorol. Soc. (1)

C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment,” Bull. Am. Meteorol. Soc. 87(9), 1211–1222 (2006).
[CrossRef]

J. Atmos. Sci. (1)

Z. Jin, T. P. Charlock, K. Rutledge, G. Cota, R. Kahn, J. Redemann, T. Zhang, D. A. Rutan, and F. Rose, “Radiative Transfer Modeling for the CLAMS Experiment,” J. Atmos. Sci. 62, 1052–1070 (2005).

J. Clim. Appl. Meteorol. (1)

B. P. Briegleb, P. Minnis, V. Ramanathan, and E. Harrison, “Comparison of regional clear-sky albedos inferred from satellite observations and model computations,” J. Clim. Appl. Meteorol. 25(2), 214–226 (1986).
[CrossRef]

J. Geophys. Res. (3)

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14,361–14,371 (1996), doi:.
[CrossRef]

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000), doi:.
[CrossRef]

J. Opt. Soc. Am. (1)

Limnol. Oceanogr. (1)

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[CrossRef]

Mon. Weather Rev. (1)

J. G. Hansen, D. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, “Efficient three-dimensional global models for climate studies: Models I and II,” Mon. Weather Rev. 111(4), 609–662 (1983).
[CrossRef]

Q. J. R. Metro, Soc. (1)

J. P. Taylor, J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, “Studies with a flexible new radiation code. II: Comparisons with aircraft shortwave observations,” Q. J. R. Metro, Soc. 122, 839–861 (1996).

Other (5)

Z. Jin, T. Charlock, W. Smith, and K. Rutledge, “A parameterization of ocean surface albedo.” Geophys. Res. Let. 31, L22301, doi:.
[CrossRef]

E. Hecht, Optics, Second Edition (Addison Wesley, 1990).

D. A. Freedman, Statistical Models: Theory and Practice (Cambridge University Press, 2005).

M. G. Robert, Second-Semester Applied Statistics (Kendall/Hunt Publishing Company, 2004).

H. C. Van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications (Academic Press, 1980).

Supplementary Material (4)

» Media 1: TXT (2 KB)     
» Media 2: TXT (4 KB)     
» Media 3: TXT (0 KB)     
» Media 4: TXT (9 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The four components of ocean surface albedo (OSA).

Fig. 2
Fig. 2

The calculated direct surface albedo, α dir s , due to the Fresnel reflection for two refractive indices (n) and three wind speeds.

Fig. 3
Fig. 3

Comparison of the parameterization by Eq. (1) and the exact calculations for the surface direct albedo, α dir s , The lower panel shows the relative error (in percentage) of the parameterization.

Fig. 4
Fig. 4

Comparison of the parameterization by Eq. (5a) and the explicit calculations for the surface diffuse albedo, α dif s , under clear skies.

Fig. 5
Fig. 5

Downwelling diffuse radiance distribution under clouds with different optical depths (different lines). SZA = 30.

Fig. 6
Fig. 6

Comparison of the parameterization by Eq. (5b) and the explicit calculations for the surface diffuse albedo, α dif s , under cloudy skies.

Fig. 7
Fig. 7

Examples of the parameterized albedo due to the water volume scattering. The upper two panels are based on Eq. (6) for the direct component and the lower panel is from Eq. (10) for the diffuse.

Fig. 8
Fig. 8

Comparison of measured and parameterized albedo in two spectral bands (614 nm and 865 nm) in four clear days. The wind speed (middle panels) and the fraction of direct incidence at surface (lower panels) for parameterization input are also from measurements at the same site as for albedo.

Fig. 9
Fig. 9

Same as Fig. 8, but for comparison in four cloudy days. The direct flux fraction (lower panels) is from measurements at 865 nm.

Fig. 10
Fig. 10

Comparison of measured and parameterized broadband albedo under all skies.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

α dir s (λ,θ,w)= α dir s (n(λ),μ(θ),σ(w))= r f (n,μ) r f (n,μ) r f ( n 0 ,μ) f(μ,σ),
σ 2 =0.003+0.00512w.
α dir s (n,μ,O)= r f (n,μ).
f(μ,σ)=( p 0 + p 1 μ+ p 2 μ 2 + p 3 μ 3 + p 4 σ+ p 5 μσ) ×exp( p 6 + p 7 μ+ p 8 μ 2 + p 9 σ+ p 10 μσ),
α dif s (λ,w)= α dif s (n(λ),σ(w))=0.14820.012σ+0.1608n0.0244nσ.
α dir w (λ,μ,w,chl)= R 0 (1 r w )(1 α dir w ) 1 r w R 0 ,
r w =0.48170.0149σ0.207 σ 2 .
R 0 (λ,μ,chl)=β(μ) b b (λ,chl) a(λ,chl) ,
β=0.62790.2227 η b 0.0513 η b 2 +(0.2465 η b 0.3119)μ,
α dif w (λ,w,chl)= α dif w (λ, μ c ,w,chl).
α dir = α dir s + α dir w
α dif = α dif s + α dif w
α= f dir α dir + f dif α dif
f dir + f dif =1.0
α b = f dir α dir s ( n 0 ,σ)+ f dif α dif s ( n 0 ,σ)+0.006,
f wc =2.95× 10 6 w 3.52 .
α c = f wc α wc +(1 f wc )α.

Metrics