Abstract

Photon correlation spectroscopy (PCS) is based on measuring the temporal correlation of the light intensity scattered by the investigated sample. A typical setup requires a temporally coherent light source. Here, we show that a short-coherence light source can be used as well, provided that its coherence properties are suitably modified. This results in a “skewed-coherence” light beam allowing that restores the coherence requirements. This approach overcomes the usual need for beam filtering, which would reduce the total brightness of the beam.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Omar, Electromagnetic Scattering and Material Characterization (Artech House, Norwood, 2011).
  2. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000).
  3. T. Zemb and P. Lindner, Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter (Elsevier, 2002).
  4. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Elsevier, 2002).
  5. B. Chu, Laser Light Scattering: Basic Principles and Practice (Dover Publications, 2007).
  6. O. E. Martinez, “Pulse distorsion in tilted pulse shcemes for ultrashort pulses,” Opt. Comm. 59, 229–232 (1986).
    [CrossRef]
  7. M. A. Porras, G. Valiulis, and P. Di Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
    [CrossRef]
  8. D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
    [CrossRef]
  9. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
    [CrossRef]
  10. A. Picozzi and M. Haelterman, “Hidden coherence along space-time trajectories in parametric wave mixing,” Phys. Rev. Lett. 88, 083901 (2002).
    [CrossRef] [PubMed]
  11. O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of x-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
    [CrossRef]
  12. O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani, “X-shaped space-time coherence in optical parametric generation,” Phys. Rev. A 76, 033823 (2007).
    [CrossRef]
  13. R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
    [CrossRef]
  14. Z. Bor and B. Rȧcz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave exitation,” Opt. Commun. 54, 165–170 (1985).
    [CrossRef]
  15. S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
    [CrossRef]
  16. M. Sutton, “A review of X-ray intensity fluctuation spectroscopy,” C. R. Phys. 9, 657–667 (2008).
    [CrossRef]
  17. K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 591–99 (2010).
    [CrossRef]
  18. G. Zanchetta and R. Cerbino, “Exploring soft matter with x-rays: from the discovery of the dna structure to the challenges of free electron lasers,” J. Phys. Condens. Matter 22, 1–21 (2010).
  19. A. Ciattoni and C. Conti, “Quantum electromagnetic X waves,” J. Opt. Soc. B,  24, 2195–2198 (2007).
    [CrossRef]

2010

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 591–99 (2010).
[CrossRef]

G. Zanchetta and R. Cerbino, “Exploring soft matter with x-rays: from the discovery of the dna structure to the challenges of free electron lasers,” J. Phys. Condens. Matter 22, 1–21 (2010).

2008

M. Sutton, “A review of X-ray intensity fluctuation spectroscopy,” C. R. Phys. 9, 657–667 (2008).
[CrossRef]

2007

A. Ciattoni and C. Conti, “Quantum electromagnetic X waves,” J. Opt. Soc. B,  24, 2195–2198 (2007).
[CrossRef]

O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani, “X-shaped space-time coherence in optical parametric generation,” Phys. Rev. A 76, 033823 (2007).
[CrossRef]

2006

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of x-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

2004

D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
[CrossRef]

2003

M. A. Porras, G. Valiulis, and P. Di Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

2002

A. Picozzi and M. Haelterman, “Hidden coherence along space-time trajectories in parametric wave mixing,” Phys. Rev. Lett. 88, 083901 (2002).
[CrossRef] [PubMed]

2000

R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
[CrossRef]

1998

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

1997

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

1986

O. E. Martinez, “Pulse distorsion in tilted pulse shcemes for ultrashort pulses,” Opt. Comm. 59, 229–232 (1986).
[CrossRef]

1985

Z. Bor and B. Rȧcz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave exitation,” Opt. Commun. 54, 165–170 (1985).
[CrossRef]

Abernathy, D. L.

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Elsevier, 2002).

Bor, Z.

Z. Bor and B. Rȧcz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave exitation,” Opt. Commun. 54, 165–170 (1985).
[CrossRef]

Brauer, S.

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Caironi, D.

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Carleton, A.

R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
[CrossRef]

Carruthers, A.

R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
[CrossRef]

Cerbino, R.

G. Zanchetta and R. Cerbino, “Exploring soft matter with x-rays: from the discovery of the dna structure to the challenges of free electron lasers,” J. Phys. Condens. Matter 22, 1–21 (2010).

Chaikin, P. M.

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000).

Chu, B.

B. Chu, Laser Light Scattering: Basic Principles and Practice (Dover Publications, 2007).

Ciattoni, A.

A. Ciattoni and C. Conti, “Quantum electromagnetic X waves,” J. Opt. Soc. B,  24, 2195–2198 (2007).
[CrossRef]

Clerici, M.

O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani, “X-shaped space-time coherence in optical parametric generation,” Phys. Rev. A 76, 033823 (2007).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of x-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

Conroy, R. S.

R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
[CrossRef]

Conti, C.

A. Ciattoni and C. Conti, “Quantum electromagnetic X waves,” J. Opt. Soc. B,  24, 2195–2198 (2007).
[CrossRef]

Danielius, R.

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Dholakia, K.

R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
[CrossRef]

Di Trapani, P.

O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani, “X-shaped space-time coherence in optical parametric generation,” Phys. Rev. A 76, 033823 (2007).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of x-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
[CrossRef]

M. A. Porras, G. Valiulis, and P. Di Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Dubietis, A.

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Faccio, D.

O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani, “X-shaped space-time coherence in optical parametric generation,” Phys. Rev. A 76, 033823 (2007).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of x-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

Grbel, G.

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Haelterman, M.

A. Picozzi and M. Haelterman, “Hidden coherence along space-time trajectories in parametric wave mixing,” Phys. Rev. Lett. 88, 083901 (2002).
[CrossRef] [PubMed]

Jedrkiewicz, O.

O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani, “X-shaped space-time coherence in optical parametric generation,” Phys. Rev. A 76, 033823 (2007).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of x-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
[CrossRef]

Lindner, P.

T. Zemb and P. Lindner, Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter (Elsevier, 2002).

Lubensky, T. C.

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000).

Martinez, O. E.

O. E. Martinez, “Pulse distorsion in tilted pulse shcemes for ultrashort pulses,” Opt. Comm. 59, 229–232 (1986).
[CrossRef]

Mayes, A. M.

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Mochrie, S. G. J.

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Nugent, K. A.

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 591–99 (2010).
[CrossRef]

Omar, A.

A. Omar, Electromagnetic Scattering and Material Characterization (Artech House, Norwood, 2011).

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Elsevier, 2002).

Picozzi, A.

O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani, “X-shaped space-time coherence in optical parametric generation,” Phys. Rev. A 76, 033823 (2007).
[CrossRef]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of x-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
[CrossRef]

A. Picozzi and M. Haelterman, “Hidden coherence along space-time trajectories in parametric wave mixing,” Phys. Rev. Lett. 88, 083901 (2002).
[CrossRef] [PubMed]

Piskarskas, A.

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Porras, M. A.

M. A. Porras, G. Valiulis, and P. Di Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

R?cz, B.

Z. Bor and B. Rȧcz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave exitation,” Opt. Commun. 54, 165–170 (1985).
[CrossRef]

Rae, C. F.

R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
[CrossRef]

Salerno, D.

D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
[CrossRef]

Sandy, A. R.

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Sinclair, B. D.

R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
[CrossRef]

Stephenson, G. B.

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Sutton, M.

M. Sutton, “A review of X-ray intensity fluctuation spectroscopy,” C. R. Phys. 9, 657–667 (2008).
[CrossRef]

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Trull, J.

D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
[CrossRef]

Valiulis, G.

D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
[CrossRef]

M. A. Porras, G. Valiulis, and P. Di Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Zanchetta, G.

G. Zanchetta and R. Cerbino, “Exploring soft matter with x-rays: from the discovery of the dna structure to the challenges of free electron lasers,” J. Phys. Condens. Matter 22, 1–21 (2010).

Zemb, T.

T. Zemb and P. Lindner, Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter (Elsevier, 2002).

Adv. Phys.

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 591–99 (2010).
[CrossRef]

Am. J. Phys.

R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68, 925–931 (2000).
[CrossRef]

C. R. Phys.

M. Sutton, “A review of X-ray intensity fluctuation spectroscopy,” C. R. Phys. 9, 657–667 (2008).
[CrossRef]

J. Opt. Soc. B

A. Ciattoni and C. Conti, “Quantum electromagnetic X waves,” J. Opt. Soc. B,  24, 2195–2198 (2007).
[CrossRef]

J. Phys. Condens. Matter

G. Zanchetta and R. Cerbino, “Exploring soft matter with x-rays: from the discovery of the dna structure to the challenges of free electron lasers,” J. Phys. Condens. Matter 22, 1–21 (2010).

Opt. Comm.

O. E. Martinez, “Pulse distorsion in tilted pulse shcemes for ultrashort pulses,” Opt. Comm. 59, 229–232 (1986).
[CrossRef]

Opt. Commun.

Z. Bor and B. Rȧcz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave exitation,” Opt. Commun. 54, 165–170 (1985).
[CrossRef]

Phys. Rev. A

O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Faccio, and P. Di Trapani, “X-shaped space-time coherence in optical parametric generation,” Phys. Rev. A 76, 033823 (2007).
[CrossRef]

Phys. Rev. E

M. A. Porras, G. Valiulis, and P. Di Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P. Di Trapani, “Noise-seeded spatiotemporal modulation instability in normal dispersion,” Phys. Rev. E 7065603 (2004).
[CrossRef]

Phys. Rev. Lett.

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

A. Picozzi and M. Haelterman, “Hidden coherence along space-time trajectories in parametric wave mixing,” Phys. Rev. Lett. 88, 083901 (2002).
[CrossRef] [PubMed]

O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, “Emergence of x-shaped spatiotemporal coherence in optical waves,” Phys. Rev. Lett. 97, 243903 (2006).
[CrossRef]

S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grbel, “Dynamics of block copolymer micelles revealed by x-ray intensity fluctuation spectroscopy,” Phys. Rev. Lett. 78, 1275–1278 (1997).
[CrossRef]

Other

A. Omar, Electromagnetic Scattering and Material Characterization (Artech House, Norwood, 2011).

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000).

T. Zemb and P. Lindner, Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter (Elsevier, 2002).

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Elsevier, 2002).

B. Chu, Laser Light Scattering: Basic Principles and Practice (Dover Publications, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left column: measured Δθ – Δλ spectra of the non-skewed (first line) and skewed (second line) short coherence sources. Right column: realistic real space 2D intensity maps of the corresponding (same row) spectra calculated based on the data from the left column and the beam characteristics (see text for details), where z is the propagating direction and x a generic transverse coordinate.

Fig. 2
Fig. 2

Experimental setup. D: diode; L1: collimating aspheric lens; G: blazed reflective grating, 600 lines per millimeter; L2 and L3: telescope, with 1:1 magnification; L4: collection optics; OF: optical fiber; APD: avalanche photodiode. The short coherence beam impinges the grating G with the coherence regions oriented perpendicularly to the propagating direction (σ=0) and exits the grating with the skewed coherence regions oriented at an angle σ. See text for details.

Fig. 3
Fig. 3

Panel (a): Measured PCS correlation function for a water suspension of 150 nm diameter colloids. Data obtained with different coherence conditions of the illuminating beams. Red line: laser beam; green dotted line: short-coherence beam; blue dotted line: skewed coherence beam with σ= 45°. Panel (b): Contrast of the correlation function measured as a function of the skew angle σ for beams with different skewnesses and a detection angle of 90°. The continuous line represents a fit with a theoretical model, as explained in the text.

Fig. 4
Fig. 4

Qualitative interpretation of the mechanism of scattering in the presence of a short-coherence source (a) and a skewed source (b). The homodyne interference of the scattered light is possible only where the coherent regions overlap. The thick stripe (yellow online) represents a coherent region of the primary beam, the dots (blue online) represent the diffusing particles that are able to produce interference, and the circular shells of increasing radius (red online) represent the coherence regions of the scattered spherical waves. See text for details.

Metrics