Abstract

The fabrication, characterization and functionalization of periodically patterned nanoporous gold layers is presented. The material shows plasmonic properties in the near infrared range, with excitation and propagation of surface plasmon polaritons. Functionalization shows a marked enhancement in the optical response in comparison with evaporated gold gratings, due to a great increase of the active surface. Due to its superior response, nanoporous gold patterns appear promising for the realization of compact plasmonic platforms for sensing purposes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, ed., Plasmonics— Fundamentals and Applications (Springer, 2007).
  2. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  3. J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
    [CrossRef]
  4. N. A. Senior and R. C. Newman, “Synthesis of tough nanoporous metals by controlled electrolytic dealloying,” Nanotechnology 17(9), 2311–2316 (2006).
    [CrossRef]
  5. T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
    [CrossRef]
  6. X. Lu, E. Bischoff, R. Spolenak, and T. J. Balk, “Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis,” Scr. Mater. 56(7), 557–560 (2007).
    [CrossRef]
  7. X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold,” J. Phys. Chem. C 113(25), 10956–10961 (2009).
    [CrossRef]
  8. E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scr. Mater. 64(4), 319–322 (2011).
    [CrossRef]
  9. A. I. Maaroof, A. Gentle, G. B. Smith, and M. B. Cortie, “Bulk and surface plasmons in highly nanoporous gold films,” J. Phys. D Appl. Phys. 40(18), 5675–5682 (2007).
    [CrossRef]
  10. F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
    [CrossRef] [PubMed]
  11. F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
    [CrossRef]
  12. F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
    [CrossRef] [PubMed]
  13. F. Romanato, K. H. Lee, G. Ruffato, and C. C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett. 96(11), 111103 (2010).
    [CrossRef]
  14. Y. Sun and T. J. Balk, “Evolution of structure, composition, and stress in nanoporous gold thin films with grain-boundary cracks,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 39(11), 2656–2665 (2008).
    [CrossRef]
  15. S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques,” J. Phys. Chem. C 111(34), 12643–12649 (2007).
    [CrossRef]
  16. S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Formation of nanostructured gold sponges by anodic dealloying: EIS investigation of product and process,” Fuel Cells (Weinh.) 9(3), 209–214 (2009).
    [CrossRef]
  17. R. L. Aggarwal, L. W. Farrar, E. D. Diebold, and D. L. Polla, “Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates,” J. Raman Spectrosc. 40(9), 1331–1333 (2009).
    [CrossRef]
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1991).
  19. M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
    [CrossRef] [PubMed]
  20. N. W. Ashcroft and N. D. Mermin, eds., Solid State Physics (Thomson Brookes – Cole, 1976).

2011

E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scr. Mater. 64(4), 319–322 (2011).
[CrossRef]

2010

F. Romanato, K. H. Lee, G. Ruffato, and C. C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett. 96(11), 111103 (2010).
[CrossRef]

2009

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Formation of nanostructured gold sponges by anodic dealloying: EIS investigation of product and process,” Fuel Cells (Weinh.) 9(3), 209–214 (2009).
[CrossRef]

R. L. Aggarwal, L. W. Farrar, E. D. Diebold, and D. L. Polla, “Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates,” J. Raman Spectrosc. 40(9), 1331–1333 (2009).
[CrossRef]

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold,” J. Phys. Chem. C 113(25), 10956–10961 (2009).
[CrossRef]

F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
[CrossRef]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[CrossRef] [PubMed]

2008

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
[CrossRef]

T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[CrossRef]

Y. Sun and T. J. Balk, “Evolution of structure, composition, and stress in nanoporous gold thin films with grain-boundary cracks,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 39(11), 2656–2665 (2008).
[CrossRef]

2007

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques,” J. Phys. Chem. C 111(34), 12643–12649 (2007).
[CrossRef]

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
[CrossRef] [PubMed]

X. Lu, E. Bischoff, R. Spolenak, and T. J. Balk, “Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis,” Scr. Mater. 56(7), 557–560 (2007).
[CrossRef]

A. I. Maaroof, A. Gentle, G. B. Smith, and M. B. Cortie, “Bulk and surface plasmons in highly nanoporous gold films,” J. Phys. D Appl. Phys. 40(18), 5675–5682 (2007).
[CrossRef]

2006

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

N. A. Senior and R. C. Newman, “Synthesis of tough nanoporous metals by controlled electrolytic dealloying,” Nanotechnology 17(9), 2311–2316 (2006).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, L. W. Farrar, E. D. Diebold, and D. L. Polla, “Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates,” J. Raman Spectrosc. 40(9), 1331–1333 (2009).
[CrossRef]

Ahl, S.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Allara, D. L.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
[CrossRef] [PubMed]

Balk, T. J.

Y. Sun and T. J. Balk, “Evolution of structure, composition, and stress in nanoporous gold thin films with grain-boundary cracks,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 39(11), 2656–2665 (2008).
[CrossRef]

X. Lu, E. Bischoff, R. Spolenak, and T. J. Balk, “Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis,” Scr. Mater. 56(7), 557–560 (2007).
[CrossRef]

Biener, J.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
[CrossRef]

Biener, M. M.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
[CrossRef]

Bischoff, E.

X. Lu, E. Bischoff, R. Spolenak, and T. J. Balk, “Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis,” Scr. Mater. 56(7), 557–560 (2007).
[CrossRef]

Caminade, A. M.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Cattarin, S.

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Formation of nanostructured gold sponges by anodic dealloying: EIS investigation of product and process,” Fuel Cells (Weinh.) 9(3), 209–214 (2009).
[CrossRef]

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques,” J. Phys. Chem. C 111(34), 12643–12649 (2007).
[CrossRef]

Chan, M. H. W.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
[CrossRef] [PubMed]

Chen, M. W.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold,” J. Phys. Chem. C 113(25), 10956–10961 (2009).
[CrossRef]

T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[CrossRef]

Cortie, M. B.

A. I. Maaroof, A. Gentle, G. B. Smith, and M. B. Cortie, “Bulk and surface plasmons in highly nanoporous gold films,” J. Phys. D Appl. Phys. 40(18), 5675–5682 (2007).
[CrossRef]

Daniel, T. A.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
[CrossRef] [PubMed]

De Hosson, J. T. M.

E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scr. Mater. 64(4), 319–322 (2011).
[CrossRef]

Detsi, E.

E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scr. Mater. 64(4), 319–322 (2011).
[CrossRef]

Diebold, E. D.

R. L. Aggarwal, L. W. Farrar, E. D. Diebold, and D. L. Polla, “Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates,” J. Raman Spectrosc. 40(9), 1331–1333 (2009).
[CrossRef]

Dixon, M. C.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
[CrossRef] [PubMed]

Erlebacher, J.

T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[CrossRef]

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Farrar, L. W.

R. L. Aggarwal, L. W. Farrar, E. D. Diebold, and D. L. Polla, “Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates,” J. Raman Spectrosc. 40(9), 1331–1333 (2009).
[CrossRef]

Fujita, T.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold,” J. Phys. Chem. C 113(25), 10956–10961 (2009).
[CrossRef]

T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[CrossRef]

Gentle, A.

A. I. Maaroof, A. Gentle, G. B. Smith, and M. B. Cortie, “Bulk and surface plasmons in highly nanoporous gold films,” J. Phys. D Appl. Phys. 40(18), 5675–5682 (2007).
[CrossRef]

Guan, P. F.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold,” J. Phys. Chem. C 113(25), 10956–10961 (2009).
[CrossRef]

Hamza, A. V.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
[CrossRef]

Hieda, M.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
[CrossRef] [PubMed]

Hodge, A. M.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Inoke, K.

T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[CrossRef]

Kang, H. K.

F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
[CrossRef]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[CrossRef] [PubMed]

Knoll, W.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Kramer, D.

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Formation of nanostructured gold sponges by anodic dealloying: EIS investigation of product and process,” Fuel Cells (Weinh.) 9(3), 209–214 (2009).
[CrossRef]

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques,” J. Phys. Chem. C 111(34), 12643–12649 (2007).
[CrossRef]

Lang, X. Y.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold,” J. Phys. Chem. C 113(25), 10956–10961 (2009).
[CrossRef]

Lee, K. H.

F. Romanato, K. H. Lee, G. Ruffato, and C. C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett. 96(11), 111103 (2010).
[CrossRef]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[CrossRef] [PubMed]

F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
[CrossRef]

Lu, X.

X. Lu, E. Bischoff, R. Spolenak, and T. J. Balk, “Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis,” Scr. Mater. 56(7), 557–560 (2007).
[CrossRef]

Lui, A.

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Formation of nanostructured gold sponges by anodic dealloying: EIS investigation of product and process,” Fuel Cells (Weinh.) 9(3), 209–214 (2009).
[CrossRef]

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques,” J. Phys. Chem. C 111(34), 12643–12649 (2007).
[CrossRef]

Maaroof, A. I.

A. I. Maaroof, A. Gentle, G. B. Smith, and M. B. Cortie, “Bulk and surface plasmons in highly nanoporous gold films,” J. Phys. D Appl. Phys. 40(18), 5675–5682 (2007).
[CrossRef]

Maier, S. A.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
[CrossRef]

Majoral, J. P.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Musiani, M.

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Formation of nanostructured gold sponges by anodic dealloying: EIS investigation of product and process,” Fuel Cells (Weinh.) 9(3), 209–214 (2009).
[CrossRef]

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques,” J. Phys. Chem. C 111(34), 12643–12649 (2007).
[CrossRef]

Newman, R. C.

N. A. Senior and R. C. Newman, “Synthesis of tough nanoporous metals by controlled electrolytic dealloying,” Nanotechnology 17(9), 2311–2316 (2006).
[CrossRef]

Nyce, G. W.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
[CrossRef]

Onck, P. R.

E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scr. Mater. 64(4), 319–322 (2011).
[CrossRef]

Polla, D. L.

R. L. Aggarwal, L. W. Farrar, E. D. Diebold, and D. L. Polla, “Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates,” J. Raman Spectrosc. 40(9), 1331–1333 (2009).
[CrossRef]

Prasciolu, M.

F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
[CrossRef]

Punzhin, S.

E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scr. Mater. 64(4), 319–322 (2011).
[CrossRef]

Qian, L. H.

T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[CrossRef]

Romanato, F.

F. Romanato, K. H. Lee, G. Ruffato, and C. C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett. 96(11), 111103 (2010).
[CrossRef]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[CrossRef] [PubMed]

F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
[CrossRef]

Ruffato, G.

F. Romanato, K. H. Lee, G. Ruffato, and C. C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett. 96(11), 111103 (2010).
[CrossRef]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[CrossRef] [PubMed]

F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
[CrossRef]

Senior, N. A.

N. A. Senior and R. C. Newman, “Synthesis of tough nanoporous metals by controlled electrolytic dealloying,” Nanotechnology 17(9), 2311–2316 (2006).
[CrossRef]

Smilgies, D. M.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
[CrossRef] [PubMed]

Smith, G. B.

A. I. Maaroof, A. Gentle, G. B. Smith, and M. B. Cortie, “Bulk and surface plasmons in highly nanoporous gold films,” J. Phys. D Appl. Phys. 40(18), 5675–5682 (2007).
[CrossRef]

Spolenak, R.

X. Lu, E. Bischoff, R. Spolenak, and T. J. Balk, “Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis,” Scr. Mater. 56(7), 557–560 (2007).
[CrossRef]

Sun, Y.

Y. Sun and T. J. Balk, “Evolution of structure, composition, and stress in nanoporous gold thin films with grain-boundary cracks,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 39(11), 2656–2665 (2008).
[CrossRef]

van de Schootbrugge, M.

E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scr. Mater. 64(4), 319–322 (2011).
[CrossRef]

Wong, C. C.

F. Romanato, K. H. Lee, G. Ruffato, and C. C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett. 96(11), 111103 (2010).
[CrossRef]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[CrossRef] [PubMed]

F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
[CrossRef]

Yu, F.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Zhang, L.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold,” J. Phys. Chem. C 113(25), 10956–10961 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 20(6), 1211–1217 (2008).
[CrossRef]

Anal. Chem.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

F. Romanato, K. H. Lee, G. Ruffato, and C. C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett. 96(11), 111103 (2010).
[CrossRef]

T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[CrossRef]

Chem. Rev.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Fuel Cells (Weinh.)

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Formation of nanostructured gold sponges by anodic dealloying: EIS investigation of product and process,” Fuel Cells (Weinh.) 9(3), 209–214 (2009).
[CrossRef]

J. Phys. Chem. C

S. Cattarin, D. Kramer, A. Lui, and M. Musiani, “Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques,” J. Phys. Chem. C 111(34), 12643–12649 (2007).
[CrossRef]

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold,” J. Phys. Chem. C 113(25), 10956–10961 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

A. I. Maaroof, A. Gentle, G. B. Smith, and M. B. Cortie, “Bulk and surface plasmons in highly nanoporous gold films,” J. Phys. D Appl. Phys. 40(18), 5675–5682 (2007).
[CrossRef]

J. Raman Spectrosc.

R. L. Aggarwal, L. W. Farrar, E. D. Diebold, and D. L. Polla, “Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates,” J. Raman Spectrosc. 40(9), 1331–1333 (2009).
[CrossRef]

Langmuir

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir 23(5), 2414–2422 (2007).
[CrossRef] [PubMed]

Metall. Mater. Trans., A Phys. Metall. Mater. Sci.

Y. Sun and T. J. Balk, “Evolution of structure, composition, and stress in nanoporous gold thin films with grain-boundary cracks,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 39(11), 2656–2665 (2008).
[CrossRef]

Microelectron. Eng.

F. Romanato, H. K. Kang, K. H. Lee, G. Ruffato, M. Prasciolu, and C. C. Wong, “Interferential lithography of 1D thin metallic sinusoidal grtings: accurate control of the profile for azimuthal angular dependent plasmonic effects and applications,” Microelectron. Eng. 86(4-6), 573–576 (2009).
[CrossRef]

Nanotechnology

N. A. Senior and R. C. Newman, “Synthesis of tough nanoporous metals by controlled electrolytic dealloying,” Nanotechnology 17(9), 2311–2316 (2006).
[CrossRef]

Opt. Express

Scr. Mater.

E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scr. Mater. 64(4), 319–322 (2011).
[CrossRef]

X. Lu, E. Bischoff, R. Spolenak, and T. J. Balk, “Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis,” Scr. Mater. 56(7), 557–560 (2007).
[CrossRef]

Other

S. A. Maier, ed., Plasmonics— Fundamentals and Applications (Springer, 2007).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1991).

N. W. Ashcroft and N. D. Mermin, eds., Solid State Physics (Thomson Brookes – Cole, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM micrographs of the FIB pattern on the nanoporous gold surface (a) and cross-section (b).

Fig. 2
Fig. 2

Dielectric permittivity of nanoporous gold. Comparison with tabulated buk gold values.

Fig. 3
Fig. 3

Reflectivity measurements for NPG grating before (solid line) and after (dashed line) functionalization at null azimuth (black line) and p-polarization (α = 0°), and at azimuth 40° (red line), polarization α = 140°. Green solid line: reflectivity data for no-patterned NPG surface.

Fig. 4
Fig. 4

Resonance angle shift Δθ as a function of azimuth rotation after functionalization with a benzenethiol self-assembled monolayer. Experimental data of functionalized nanoporous gold (NPG) grating (period Λ = 1000 nm, incident wavelength λ = 1400 nm – red points) are compared with experimental shifts for an evaporated-gold (EVG) grating (Λ = 400 nm, λ = 600 nm – black points). Inset picture: scheme of the incidence mounting.

Tables (1)

Tables Icon

Table 1 Parameters of Eq. (1) from the Fit of Permittivity Experimental Data for Nanoporous Gold (NPG) and Evaporated Gold (EVG)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε + ε U V ( ω ) + ε D ( ω ) + ε I R ( ω ) = ε A U V ω 2 ω U V 2 + i ω ω τ , U V ω p 2 ω 2 + i ω ω τ , D A I R ω 2 ω I R 2 + i ω ω τ , I R
N = m ε 0 ω p 2 e 2
k S P P = k i n | | ± n G

Metrics