Abstract

We present a method for the visual measurement of the 3D position and orientation of a moving target. Three dimensional sensing is based on stereo vision while high resolution results from a pseudo-periodic pattern (PPP) fixed onto the target. The PPP is suited for optimizing image processing that is based on phase computations. We describe experimental setup, image processing and system calibration. Resolutions reported are in the micrometer range for target position (x, y, z) and of 5.3 × 10−4rad. for target orientation (θx, θy, θz). These performances have to be appreciated with respect to the vision system used. The latter makes that every image pixel corresponds to an actual distance of 0.3 × 0.3mm2 on the target while the PPP is made of elementary dots of 1mm with a period of 2mm. Target tilts as large as π/4 are allowed with respect to the Z axis of the system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kanade, and C. Zitnick, “A cooperative algorithm for stereo matching and occlusion detection,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 675–684 (2000).
    [CrossRef]
  2. D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1), 7–42 (2002).
    [CrossRef]
  3. A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single still image,” Int. J. Comput. Vis. 76(1), 53–69 (2008).
    [CrossRef]
  4. W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan, “Image-based visual hulls,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 369–374.
  5. C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM SIGGRAPH 2004 Papers, (ACM, 2004), pp. 600–608.
  6. P. Sandoz, J. C. Ravassard, S. Dembélé, and A. Janex, “Phase-sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49(44), 867–872 (2000).
    [CrossRef]
  7. P. Sandoz, V. Bonnans, and T. Gharbi, “High-accuracy position and orientation measurement of extended twodimensional surfaces by a phase-sensitive vision method,” Appl. Opt. 41(26), 5503–5511 (2002).
    [CrossRef] [PubMed]
  8. P. Sandoz, B. Trolard, D. Marsaut, and T. Gharbi, ““Microstructured surface element for high-accuracy position measurement by vision and phase measurement,” Ibero-American Conf. RIAO-OPTILAS,” Proc. SPIE 5622, 606–611 (2004).
  9. P. Sandoz, J. M. Friedt, and E. Carry, “In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern,” Rev. Sci. Instrum. 78, 023706 (2007).
    [CrossRef] [PubMed]
  10. J. Y. Bouguet, Camera calibration toolbox for matlab (2008). http://www.vision.caltech.edu/bouguetj/calib_doc/
  11. J. A. G. Zea, P. Sandoz, and L. Robert, “Position encryption of extended surfaces for subpixel localization of small-sized fields of observation,” in Proc. IEEE on International Symposium on Optomechatronic Technologies, (IEEE, 2009), pp. 21–27.
  12. R. J. Hansman, “Characteristics of instrumentation,” in The Measurement, Instrumentation, and Sensors Handbook, J. G. Webster, ed. (Springer-Verlag, 1999).
  13. P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255(3), 293–303 (2007).
    [CrossRef]
  14. J. A. G. Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatronics 4(1), 65–82 (2010).
    [CrossRef]
  15. J. Batlle, J. Marti, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
    [CrossRef]

2010

J. A. G. Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatronics 4(1), 65–82 (2010).
[CrossRef]

2008

A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single still image,” Int. J. Comput. Vis. 76(1), 53–69 (2008).
[CrossRef]

2007

P. Sandoz, J. M. Friedt, and E. Carry, “In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern,” Rev. Sci. Instrum. 78, 023706 (2007).
[CrossRef] [PubMed]

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255(3), 293–303 (2007).
[CrossRef]

2004

P. Sandoz, B. Trolard, D. Marsaut, and T. Gharbi, ““Microstructured surface element for high-accuracy position measurement by vision and phase measurement,” Ibero-American Conf. RIAO-OPTILAS,” Proc. SPIE 5622, 606–611 (2004).

2002

J. Batlle, J. Marti, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

P. Sandoz, V. Bonnans, and T. Gharbi, “High-accuracy position and orientation measurement of extended twodimensional surfaces by a phase-sensitive vision method,” Appl. Opt. 41(26), 5503–5511 (2002).
[CrossRef] [PubMed]

D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1), 7–42 (2002).
[CrossRef]

2000

T. Kanade, and C. Zitnick, “A cooperative algorithm for stereo matching and occlusion detection,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 675–684 (2000).
[CrossRef]

P. Sandoz, J. C. Ravassard, S. Dembélé, and A. Janex, “Phase-sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49(44), 867–872 (2000).
[CrossRef]

Amat, J.

J. Batlle, J. Marti, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Batlle, J.

J. Batlle, J. Marti, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Bonnans, V.

Carry, E.

P. Sandoz, J. M. Friedt, and E. Carry, “In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern,” Rev. Sci. Instrum. 78, 023706 (2007).
[CrossRef] [PubMed]

Chung, S. H.

A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single still image,” Int. J. Comput. Vis. 76(1), 53–69 (2008).
[CrossRef]

Dembélé, S.

P. Sandoz, J. C. Ravassard, S. Dembélé, and A. Janex, “Phase-sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49(44), 867–872 (2000).
[CrossRef]

Friedt, J. M.

P. Sandoz, J. M. Friedt, and E. Carry, “In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern,” Rev. Sci. Instrum. 78, 023706 (2007).
[CrossRef] [PubMed]

Froelhy, L.

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255(3), 293–303 (2007).
[CrossRef]

Gaiffe, E.

J. A. G. Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatronics 4(1), 65–82 (2010).
[CrossRef]

Gharbi, T.

P. Sandoz, B. Trolard, D. Marsaut, and T. Gharbi, ““Microstructured surface element for high-accuracy position measurement by vision and phase measurement,” Ibero-American Conf. RIAO-OPTILAS,” Proc. SPIE 5622, 606–611 (2004).

P. Sandoz, V. Bonnans, and T. Gharbi, “High-accuracy position and orientation measurement of extended twodimensional surfaces by a phase-sensitive vision method,” Appl. Opt. 41(26), 5503–5511 (2002).
[CrossRef] [PubMed]

Janex, A.

P. Sandoz, J. C. Ravassard, S. Dembélé, and A. Janex, “Phase-sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49(44), 867–872 (2000).
[CrossRef]

Kanade, T.

T. Kanade, and C. Zitnick, “A cooperative algorithm for stereo matching and occlusion detection,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 675–684 (2000).
[CrossRef]

Marsaut, D.

P. Sandoz, B. Trolard, D. Marsaut, and T. Gharbi, ““Microstructured surface element for high-accuracy position measurement by vision and phase measurement,” Ibero-American Conf. RIAO-OPTILAS,” Proc. SPIE 5622, 606–611 (2004).

Marti, J.

J. Batlle, J. Marti, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Mougin, C.

J. A. G. Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatronics 4(1), 65–82 (2010).
[CrossRef]

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255(3), 293–303 (2007).
[CrossRef]

Ng, A. Y.

A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single still image,” Int. J. Comput. Vis. 76(1), 53–69 (2008).
[CrossRef]

Prétet, J. L.

J. A. G. Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatronics 4(1), 65–82 (2010).
[CrossRef]

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255(3), 293–303 (2007).
[CrossRef]

Ravassard, J. C.

P. Sandoz, J. C. Ravassard, S. Dembélé, and A. Janex, “Phase-sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49(44), 867–872 (2000).
[CrossRef]

Ridao, P.

J. Batlle, J. Marti, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Sandoz, P.

J. A. G. Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatronics 4(1), 65–82 (2010).
[CrossRef]

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255(3), 293–303 (2007).
[CrossRef]

P. Sandoz, J. M. Friedt, and E. Carry, “In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern,” Rev. Sci. Instrum. 78, 023706 (2007).
[CrossRef] [PubMed]

P. Sandoz, B. Trolard, D. Marsaut, and T. Gharbi, ““Microstructured surface element for high-accuracy position measurement by vision and phase measurement,” Ibero-American Conf. RIAO-OPTILAS,” Proc. SPIE 5622, 606–611 (2004).

P. Sandoz, V. Bonnans, and T. Gharbi, “High-accuracy position and orientation measurement of extended twodimensional surfaces by a phase-sensitive vision method,” Appl. Opt. 41(26), 5503–5511 (2002).
[CrossRef] [PubMed]

P. Sandoz, J. C. Ravassard, S. Dembélé, and A. Janex, “Phase-sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49(44), 867–872 (2000).
[CrossRef]

Saxena, A.

A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single still image,” Int. J. Comput. Vis. 76(1), 53–69 (2008).
[CrossRef]

Scharstein, D.

D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1), 7–42 (2002).
[CrossRef]

Szeliski, R.

D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1), 7–42 (2002).
[CrossRef]

Trolard, B.

P. Sandoz, B. Trolard, D. Marsaut, and T. Gharbi, ““Microstructured surface element for high-accuracy position measurement by vision and phase measurement,” Ibero-American Conf. RIAO-OPTILAS,” Proc. SPIE 5622, 606–611 (2004).

Zea, J. A. G.

J. A. G. Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatronics 4(1), 65–82 (2010).
[CrossRef]

Zeggari, R.

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255(3), 293–303 (2007).
[CrossRef]

Zitnick, C.

T. Kanade, and C. Zitnick, “A cooperative algorithm for stereo matching and occlusion detection,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 675–684 (2000).
[CrossRef]

Appl. Opt.

IEEE Trans. Instrum. Meas.

P. Sandoz, J. C. Ravassard, S. Dembélé, and A. Janex, “Phase-sensitive vision technique for high accuracy position measurement of moving targets,” IEEE Trans. Instrum. Meas. 49(44), 867–872 (2000).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

T. Kanade, and C. Zitnick, “A cooperative algorithm for stereo matching and occlusion detection,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 675–684 (2000).
[CrossRef]

Int. J. Comput. Vis.

D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1), 7–42 (2002).
[CrossRef]

A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single still image,” Int. J. Comput. Vis. 76(1), 53–69 (2008).
[CrossRef]

Int. J. Optomechatronics

J. A. G. Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatronics 4(1), 65–82 (2010).
[CrossRef]

J. Microsc.

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255(3), 293–303 (2007).
[CrossRef]

Proc. SPIE

P. Sandoz, B. Trolard, D. Marsaut, and T. Gharbi, ““Microstructured surface element for high-accuracy position measurement by vision and phase measurement,” Ibero-American Conf. RIAO-OPTILAS,” Proc. SPIE 5622, 606–611 (2004).

Real-Time Imaging

J. Batlle, J. Marti, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Rev. Sci. Instrum.

P. Sandoz, J. M. Friedt, and E. Carry, “In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern,” Rev. Sci. Instrum. 78, 023706 (2007).
[CrossRef] [PubMed]

Other

J. Y. Bouguet, Camera calibration toolbox for matlab (2008). http://www.vision.caltech.edu/bouguetj/calib_doc/

J. A. G. Zea, P. Sandoz, and L. Robert, “Position encryption of extended surfaces for subpixel localization of small-sized fields of observation,” in Proc. IEEE on International Symposium on Optomechatronic Technologies, (IEEE, 2009), pp. 21–27.

R. J. Hansman, “Characteristics of instrumentation,” in The Measurement, Instrumentation, and Sensors Handbook, J. G. Webster, ed. (Springer-Verlag, 1999).

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan, “Image-based visual hulls,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 369–374.

C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM SIGGRAPH 2004 Papers, (ACM, 2004), pp. 600–608.

Supplementary Material (4)

» Media 1: AVI (2735 KB)     
» Media 2: AVI (2288 KB)     
» Media 3: AVI (2718 KB)     
» Media 4: AVI (1472 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fourier processing of the dot pattern: (a) recorded image of the pattern; (b) Fourier spectrum of the pattern image; (c) Modulus and (d) unwrapped phase of inverse Fourier transform after bandpass filtering of lobe (u1, v1); (e) Unwrapped phase of (d) in the modulus window; (f) Unwrapped phase in the complementary direction; i.e. from lobe (u2, v2).

Fig. 2
Fig. 2

Stereo vision configuration and localization of the volume of measurement (about 10cm wide in X and Y, and 20cm in Z).

Fig. 3
Fig. 3

Images of the pattern as recorded by the left (a) and right (b) cameras.

Fig. 4
Fig. 4

Evaluation of Maximum allowed target tilt with respect to the system axis: (–45°, 45°) around X (a) and Y (b), (0°, 360°) around Z (c). Red lines indicate the pattern normal at each reconstructed position.

Fig. 5
Fig. 5

(a) ( Media 1), (b) ( Media 2), and (c) ( Media 3) Video presentations of target rotation around the three axis. The reconstructed perimeter formed by the four diagonal points are presented simultaneously to the images recorded by the left and right cameras.

Fig. 6
Fig. 6

XYZ position deviations measured for 100 measurements without target displacement. (a) One case with statistics close to the average observed; (b) Worst case observed.

Fig. 7
Fig. 7

(a) 3D reconstructed target displacements while a “FEMTO-ST UIS GOTS” drive signal was applied to the motors within a diamond-like contour. (b) Enlarged view of a tiny volume corresponding to a pattern shift of only 2/3 of a pixel in the recorded images. Full acronym extension: 122.8μm in X, 94.1μm in Y, 54.1μm in Z.

Fig. 8
Fig. 8

Video presentation of 3D reconstructed target displacements. ( Media 4)

Tables (2)

Tables Icon

Table 1 Calibration results obtained for our stereo vision setup (See ref. [10] for parameter definition)

Tables Icon

Table 2 Repeatability statistics obtained for position and angle reconstruction while sweeping the target over 1mm by steps of 20 microns and performing 100 measurements without motorized target displacement at each position. Mean values columns compare average values obtained on the 51 data clouds while Peak-Valley and Standard Deviation columns correspond to the single data cloud of interest

Metrics