Abstract

In atomic force microscopy (AFM), finding sparsely distributed regions of interest can be difficult and time-consuming. Typically, the tip is scanned until the desired object is located. This process can mechanically or chemically degrade the tip, as well as damage fragile biological samples. Protein assemblies can be detected using the back-scattered light from a focused laser beam. We previously used back-scattered light from a pair of laser foci to stabilize an AFM. In the present work, we integrate these techniques to optically image patches of purple membranes prior to AFM investigation. These rapidly acquired optical images were aligned to the subsequent AFM images to ~40 nm, since the tip position was aligned to the optical axis of the imaging laser. Thus, this label-free imaging efficiently locates sparsely distributed protein assemblies for subsequent AFM study while simultaneously minimizing degradation of the tip and the sample.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
    [CrossRef] [PubMed]
  2. M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997).
    [CrossRef] [PubMed]
  3. S. Scheuring and J. N. Sturgis, “Chromatic adaptation of photosynthetic membranes,” Science 309(5733), 484–487 (2005).
    [CrossRef] [PubMed]
  4. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994).
    [CrossRef] [PubMed]
  5. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
    [CrossRef]
  6. S. M. Block, K. A. Fahrner, and H. C. Berg, “Visualization of bacterial flagella by video-enhanced light microscopy,” J. Bacteriol. 173(2), 933–936 (1991).
    [PubMed]
  7. R. A. Lugmaier, T. Hugel, M. Benoit, and H. E. Gaub, “Phase contrast and DIC illumination for AFM hybrids,” Ultramicroscopy 104(3-4), 255–260 (2005).
    [CrossRef] [PubMed]
  8. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
    [CrossRef] [PubMed]
  9. H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996).
    [CrossRef]
  10. C. A. J. Putman, H. G. Hansma, H. E. Gaub, and P. K. Hansma, “Polymerized Lb Films Imaged with a Combined Atomic Force Microscope Fluorescence Microscope,” Langmuir 8(12), 3014–3019 (1992).
    [CrossRef]
  11. A. B. Mathur, G. A. Truskey, and W. M. Reichert, “Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells,” Biophys. J. 78(4), 1725–1735 (2000).
    [CrossRef] [PubMed]
  12. H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009).
    [CrossRef] [PubMed]
  13. H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
    [CrossRef] [PubMed]
  14. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14(1), 405–414 (2006).
    [CrossRef] [PubMed]
  15. A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express 15(20), 13434–13445 (2007).
    [CrossRef] [PubMed]
  16. G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale lateral stability and registration in ambient condition,” Nano Lett. 9(4), 1451–1456 (2009).
    [CrossRef] [PubMed]
  17. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46(3), 421–427 (2007).
    [CrossRef] [PubMed]
  18. G. Meyer and N. M. Amer, “Novel Optical Approach to Atomic Force Microscopy,” Appl. Phys. Lett. 53(12), 1045–1047 (1988).
    [CrossRef]
  19. R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
    [CrossRef] [PubMed]
  20. D. J. Müller and A. Engel, “Atomic force microscopy and spectroscopy of native membrane proteins,” Nat. Protoc. 2(9), 2191–2197 (2007).
    [CrossRef] [PubMed]
  21. Y. Shichida, S. Matuoka, Y. Hidaka, and T. Yoshizawa, “Absorption spectra of intermediate of bacteriorhodopsin measured by laser photolysis at room temperatures,” Biochim. Biophys. Acta 723(2), 240–246 (1983).
    [CrossRef]
  22. D. J. Müller and A. Engel, “The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions,” Biophys. J. 73(3), 1633–1644 (1997).
    [CrossRef] [PubMed]
  23. D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, Upper Saddle River, NJ, 1999).
  24. A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide lightmode spectroscopy,” Biosens. Bioelectron. 21(8), 1606–1612 (2006).
    [CrossRef]
  25. H. Michel and D. Oesterhelt, “Three-dimensional crystals of membrane proteins: bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 77(3), 1283–1285 (1980).
    [CrossRef] [PubMed]

2009 (2)

H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009).
[CrossRef] [PubMed]

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale lateral stability and registration in ambient condition,” Nano Lett. 9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

2007 (4)

A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46(3), 421–427 (2007).
[CrossRef] [PubMed]

A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express 15(20), 13434–13445 (2007).
[CrossRef] [PubMed]

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
[CrossRef] [PubMed]

D. J. Müller and A. Engel, “Atomic force microscopy and spectroscopy of native membrane proteins,” Nat. Protoc. 2(9), 2191–2197 (2007).
[CrossRef] [PubMed]

2006 (3)

R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
[CrossRef] [PubMed]

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14(1), 405–414 (2006).
[CrossRef] [PubMed]

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide lightmode spectroscopy,” Biosens. Bioelectron. 21(8), 1606–1612 (2006).
[CrossRef]

2005 (2)

S. Scheuring and J. N. Sturgis, “Chromatic adaptation of photosynthetic membranes,” Science 309(5733), 484–487 (2005).
[CrossRef] [PubMed]

R. A. Lugmaier, T. Hugel, M. Benoit, and H. E. Gaub, “Phase contrast and DIC illumination for AFM hybrids,” Ultramicroscopy 104(3-4), 255–260 (2005).
[CrossRef] [PubMed]

2003 (1)

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

2000 (2)

A. B. Mathur, G. A. Truskey, and W. M. Reichert, “Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells,” Biophys. J. 78(4), 1725–1735 (2000).
[CrossRef] [PubMed]

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
[CrossRef]

1997 (2)

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997).
[CrossRef] [PubMed]

D. J. Müller and A. Engel, “The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions,” Biophys. J. 73(3), 1633–1644 (1997).
[CrossRef] [PubMed]

1996 (1)

H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996).
[CrossRef]

1994 (1)

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994).
[CrossRef] [PubMed]

1992 (1)

C. A. J. Putman, H. G. Hansma, H. E. Gaub, and P. K. Hansma, “Polymerized Lb Films Imaged with a Combined Atomic Force Microscope Fluorescence Microscope,” Langmuir 8(12), 3014–3019 (1992).
[CrossRef]

1991 (1)

S. M. Block, K. A. Fahrner, and H. C. Berg, “Visualization of bacterial flagella by video-enhanced light microscopy,” J. Bacteriol. 173(2), 933–936 (1991).
[PubMed]

1988 (1)

G. Meyer and N. M. Amer, “Novel Optical Approach to Atomic Force Microscopy,” Appl. Phys. Lett. 53(12), 1045–1047 (1988).
[CrossRef]

1986 (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

1983 (1)

Y. Shichida, S. Matuoka, Y. Hidaka, and T. Yoshizawa, “Absorption spectra of intermediate of bacteriorhodopsin measured by laser photolysis at room temperatures,” Biochim. Biophys. Acta 723(2), 240–246 (1983).
[CrossRef]

1980 (1)

H. Michel and D. Oesterhelt, “Three-dimensional crystals of membrane proteins: bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 77(3), 1283–1285 (1980).
[CrossRef] [PubMed]

Agnus, G.

R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
[CrossRef] [PubMed]

Akamine, S.

H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996).
[CrossRef]

Alchenberger, D.

Amer, N. M.

G. Meyer and N. M. Amer, “Novel Optical Approach to Atomic Force Microscopy,” Appl. Phys. Lett. 53(12), 1045–1047 (1988).
[CrossRef]

Bartenlian, B.

R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
[CrossRef] [PubMed]

Benoit, M.

R. A. Lugmaier, T. Hugel, M. Benoit, and H. E. Gaub, “Phase contrast and DIC illumination for AFM hybrids,” Ultramicroscopy 104(3-4), 255–260 (2005).
[CrossRef] [PubMed]

Berg, H. C.

S. M. Block, K. A. Fahrner, and H. C. Berg, “Visualization of bacterial flagella by video-enhanced light microscopy,” J. Bacteriol. 173(2), 933–936 (1991).
[PubMed]

Binnig, G.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Block, S. M.

S. M. Block, K. A. Fahrner, and H. C. Berg, “Visualization of bacterial flagella by video-enhanced light microscopy,” J. Bacteriol. 173(2), 933–936 (1991).
[PubMed]

Brunner, C.

Carter, A. R.

Churnside, A. B.

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale lateral stability and registration in ambient condition,” Nano Lett. 9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

Eberle, L. S.

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale lateral stability and registration in ambient condition,” Nano Lett. 9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

Engel, A.

D. J. Müller and A. Engel, “Atomic force microscopy and spectroscopy of native membrane proteins,” Nat. Protoc. 2(9), 2191–2197 (2007).
[CrossRef] [PubMed]

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
[CrossRef]

D. J. Müller and A. Engel, “The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions,” Biophys. J. 73(3), 1633–1644 (1997).
[CrossRef] [PubMed]

Ewers, H.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
[CrossRef] [PubMed]

Fahrner, K. A.

S. M. Block, K. A. Fahrner, and H. C. Berg, “Visualization of bacterial flagella by video-enhanced light microscopy,” J. Bacteriol. 173(2), 933–936 (1991).
[PubMed]

Fernandez, J. M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997).
[CrossRef] [PubMed]

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Frisbie, C. D.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994).
[CrossRef] [PubMed]

Fukuzawa, K.

H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996).
[CrossRef]

Garab, G.

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide lightmode spectroscopy,” Biosens. Bioelectron. 21(8), 1606–1612 (2006).
[CrossRef]

Gaub, H. E.

H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009).
[CrossRef] [PubMed]

R. A. Lugmaier, T. Hugel, M. Benoit, and H. E. Gaub, “Phase contrast and DIC illumination for AFM hybrids,” Ultramicroscopy 104(3-4), 255–260 (2005).
[CrossRef] [PubMed]

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
[CrossRef]

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997).
[CrossRef] [PubMed]

C. A. J. Putman, H. G. Hansma, H. E. Gaub, and P. K. Hansma, “Polymerized Lb Films Imaged with a Combined Atomic Force Microscope Fluorescence Microscope,” Langmuir 8(12), 3014–3019 (1992).
[CrossRef]

Gautel, M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997).
[CrossRef] [PubMed]

Gerber, C.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Goldman, Y. E.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Gonçalves, R. P.

R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
[CrossRef] [PubMed]

Gumpp, H.

H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009).
[CrossRef] [PubMed]

Ha, T.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Halsey, W.

Hansma, H. G.

C. A. J. Putman, H. G. Hansma, H. E. Gaub, and P. K. Hansma, “Polymerized Lb Films Imaged with a Combined Atomic Force Microscope Fluorescence Microscope,” Langmuir 8(12), 3014–3019 (1992).
[CrossRef]

Hansma, P. K.

C. A. J. Putman, H. G. Hansma, H. E. Gaub, and P. K. Hansma, “Polymerized Lb Films Imaged with a Combined Atomic Force Microscope Fluorescence Microscope,” Langmuir 8(12), 3014–3019 (1992).
[CrossRef]

Helenius, A.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
[CrossRef] [PubMed]

Hidaka, Y.

Y. Shichida, S. Matuoka, Y. Hidaka, and T. Yoshizawa, “Absorption spectra of intermediate of bacteriorhodopsin measured by laser photolysis at room temperatures,” Biochim. Biophys. Acta 723(2), 240–246 (1983).
[CrossRef]

Houssin, C.

R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
[CrossRef] [PubMed]

Hugel, T.

R. A. Lugmaier, T. Hugel, M. Benoit, and H. E. Gaub, “Phase contrast and DIC illumination for AFM hybrids,” Ultramicroscopy 104(3-4), 255–260 (2005).
[CrossRef] [PubMed]

Jacobsen, V.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
[CrossRef] [PubMed]

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14(1), 405–414 (2006).
[CrossRef] [PubMed]

King, G. M.

Klotzsch, E.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
[CrossRef] [PubMed]

Kuwano, H.

H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996).
[CrossRef]

Lieber, C. M.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994).
[CrossRef] [PubMed]

Lugmaier, R. A.

R. A. Lugmaier, T. Hugel, M. Benoit, and H. E. Gaub, “Phase contrast and DIC illumination for AFM hybrids,” Ultramicroscopy 104(3-4), 255–260 (2005).
[CrossRef] [PubMed]

Lukács, A.

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide lightmode spectroscopy,” Biosens. Bioelectron. 21(8), 1606–1612 (2006).
[CrossRef]

Mathur, A. B.

A. B. Mathur, G. A. Truskey, and W. M. Reichert, “Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells,” Biophys. J. 78(4), 1725–1735 (2000).
[CrossRef] [PubMed]

Matuoka, S.

Y. Shichida, S. Matuoka, Y. Hidaka, and T. Yoshizawa, “Absorption spectra of intermediate of bacteriorhodopsin measured by laser photolysis at room temperatures,” Biochim. Biophys. Acta 723(2), 240–246 (1983).
[CrossRef]

McKinney, S. A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Meyer, G.

G. Meyer and N. M. Amer, “Novel Optical Approach to Atomic Force Microscopy,” Appl. Phys. Lett. 53(12), 1045–1047 (1988).
[CrossRef]

Michel, H.

H. Michel and D. Oesterhelt, “Three-dimensional crystals of membrane proteins: bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 77(3), 1283–1285 (1980).
[CrossRef] [PubMed]

Müller, D. J.

D. J. Müller and A. Engel, “Atomic force microscopy and spectroscopy of native membrane proteins,” Nat. Protoc. 2(9), 2191–2197 (2007).
[CrossRef] [PubMed]

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
[CrossRef]

D. J. Müller and A. Engel, “The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions,” Biophys. J. 73(3), 1633–1644 (1997).
[CrossRef] [PubMed]

Noy, A.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994).
[CrossRef] [PubMed]

Oesterhelt, D.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
[CrossRef]

H. Michel and D. Oesterhelt, “Three-dimensional crystals of membrane proteins: bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 77(3), 1283–1285 (1980).
[CrossRef] [PubMed]

Oesterhelt, F.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
[CrossRef]

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997).
[CrossRef] [PubMed]

Papp, E.

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide lightmode spectroscopy,” Biosens. Bioelectron. 21(8), 1606–1612 (2006).
[CrossRef]

Perkins, T. T.

Pfeiffer, M.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
[CrossRef]

Puchner, E. M.

H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009).
[CrossRef] [PubMed]

Putman, C. A. J.

C. A. J. Putman, H. G. Hansma, H. E. Gaub, and P. K. Hansma, “Polymerized Lb Films Imaged with a Combined Atomic Force Microscope Fluorescence Microscope,” Langmuir 8(12), 3014–3019 (1992).
[CrossRef]

Quate, C. F.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Reichert, W. M.

A. B. Mathur, G. A. Truskey, and W. M. Reichert, “Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells,” Biophys. J. 78(4), 1725–1735 (2000).
[CrossRef] [PubMed]

Rief, M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997).
[CrossRef] [PubMed]

Rozsnyai, L. F.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994).
[CrossRef] [PubMed]

Sandoghdar, V.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
[CrossRef] [PubMed]

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14(1), 405–414 (2006).
[CrossRef] [PubMed]

Scheuring, S.

R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
[CrossRef] [PubMed]

S. Scheuring and J. N. Sturgis, “Chromatic adaptation of photosynthetic membranes,” Science 309(5733), 484–487 (2005).
[CrossRef] [PubMed]

Selvin, P. R.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Sens, P.

R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
[CrossRef] [PubMed]

Shichida, Y.

Y. Shichida, S. Matuoka, Y. Hidaka, and T. Yoshizawa, “Absorption spectra of intermediate of bacteriorhodopsin measured by laser photolysis at room temperatures,” Biochim. Biophys. Acta 723(2), 240–246 (1983).
[CrossRef]

Smith, A. E.

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
[CrossRef] [PubMed]

Stahl, S. W.

H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009).
[CrossRef] [PubMed]

Stoller, P.

Strackharn, M.

H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009).
[CrossRef] [PubMed]

Sturgis, J. N.

S. Scheuring and J. N. Sturgis, “Chromatic adaptation of photosynthetic membranes,” Science 309(5733), 484–487 (2005).
[CrossRef] [PubMed]

Tokumoto, H.

H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996).
[CrossRef]

Truskey, G. A.

A. B. Mathur, G. A. Truskey, and W. M. Reichert, “Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells,” Biophys. J. 78(4), 1725–1735 (2000).
[CrossRef] [PubMed]

Ulrich, T. A.

Vogel, V.

Wrighton, M. S.

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994).
[CrossRef] [PubMed]

Yamada, H.

H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996).
[CrossRef]

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Yoshizawa, T.

Y. Shichida, S. Matuoka, Y. Hidaka, and T. Yoshizawa, “Absorption spectra of intermediate of bacteriorhodopsin measured by laser photolysis at room temperatures,” Biochim. Biophys. Acta 723(2), 240–246 (1983).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Meyer and N. M. Amer, “Novel Optical Approach to Atomic Force Microscopy,” Appl. Phys. Lett. 53(12), 1045–1047 (1988).
[CrossRef]

Biochim. Biophys. Acta (1)

Y. Shichida, S. Matuoka, Y. Hidaka, and T. Yoshizawa, “Absorption spectra of intermediate of bacteriorhodopsin measured by laser photolysis at room temperatures,” Biochim. Biophys. Acta 723(2), 240–246 (1983).
[CrossRef]

Biophys. J. (2)

D. J. Müller and A. Engel, “The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions,” Biophys. J. 73(3), 1633–1644 (1997).
[CrossRef] [PubMed]

A. B. Mathur, G. A. Truskey, and W. M. Reichert, “Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells,” Biophys. J. 78(4), 1725–1735 (2000).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide lightmode spectroscopy,” Biosens. Bioelectron. 21(8), 1606–1612 (2006).
[CrossRef]

J. Bacteriol. (1)

S. M. Block, K. A. Fahrner, and H. C. Berg, “Visualization of bacterial flagella by video-enhanced light microscopy,” J. Bacteriol. 173(2), 933–936 (1991).
[PubMed]

J. Vac. Sci. Technol. B (1)

H. Yamada, H. Tokumoto, S. Akamine, K. Fukuzawa, and H. Kuwano, “Imaging of organic molecular films using a scanning near-field optical microscope combined with an atomic force microscope,” J. Vac. Sci. Technol. B 14(2), 812–815 (1996).
[CrossRef]

Langmuir (1)

C. A. J. Putman, H. G. Hansma, H. E. Gaub, and P. K. Hansma, “Polymerized Lb Films Imaged with a Combined Atomic Force Microscope Fluorescence Microscope,” Langmuir 8(12), 3014–3019 (1992).
[CrossRef]

Nano Lett. (2)

H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, and V. Sandoghdar, “Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers,” Nano Lett. 7(8), 2263–2266 (2007).
[CrossRef] [PubMed]

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale lateral stability and registration in ambient condition,” Nano Lett. 9(4), 1451–1456 (2009).
[CrossRef] [PubMed]

Nat. Methods (1)

R. P. Gonçalves, G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring, “Two-chamber AFM: probing membrane proteins separating two aqueous compartments,” Nat. Methods 3(12), 1007–1012 (2006).
[CrossRef] [PubMed]

Nat. Protoc. (1)

D. J. Müller and A. Engel, “Atomic force microscopy and spectroscopy of native membrane proteins,” Nat. Protoc. 2(9), 2191–2197 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Michel and D. Oesterhelt, “Three-dimensional crystals of membrane proteins: bacteriorhodopsin,” Proc. Natl. Acad. Sci. U.S.A. 77(3), 1283–1285 (1980).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

H. Gumpp, S. W. Stahl, M. Strackharn, E. M. Puchner, and H. E. Gaub, “Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected],” Rev. Sci. Instrum. 80(6), 063704 (2009).
[CrossRef] [PubMed]

Science (5)

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science 276(5315), 1109–1112 (1997).
[CrossRef] [PubMed]

S. Scheuring and J. N. Sturgis, “Chromatic adaptation of photosynthetic membranes,” Science 309(5733), 484–487 (2005).
[CrossRef] [PubMed]

C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265(5181), 2071–2074 (1994).
[CrossRef] [PubMed]

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288(5463), 143–146 (2000).
[CrossRef]

Ultramicroscopy (1)

R. A. Lugmaier, T. Hugel, M. Benoit, and H. E. Gaub, “Phase contrast and DIC illumination for AFM hybrids,” Ultramicroscopy 104(3-4), 255–260 (2005).
[CrossRef] [PubMed]

Other (1)

D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, Upper Saddle River, NJ, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optically locating a region of interest for study by AFM. (a) With the tip retracted far from the surface, the sample is raster-scanned through the focused laser beam to obtain an image. (b) An AFM tip, aligned to the laser used for imaging, can probe an optically identified feature for detailed study. (c) A representative 30 × 30 μm2 optical image (pixel size = 150 nm) revealed several surface features. The pink box denotes a purple membrane patch suitable for further study. (d) An optical image of area in the pink box (pixel size = 20 nm). (e) An AFM image of the same area shows it to be a purple membrane patch (pixel size = 4.2 nm).

Fig. 2
Fig. 2

Schematic of instrument. Beams from two laser diodes (LD, λ = 810, 845 nm) were actively stabilized to minimize noise using feedback to acousto-optic modulators (AOM) [17]. These stabilized beams were launched from a common polarization-maintaining fiber to minimize differential pointing noise. They were then separated by wavelength for independent steering. A lens in one beam path vertically shifted one of the foci in the imaging plane so as to simultaneously maximize the scattering signal from the tip and the fiducial mark on the surface. The beams were recombined, and a high numerical aperture objective focused them near the sample surface, where they scattered off of the tip or features on the substrate. Back-scattered light was efficiently separated using an optical isolator, formed by a quarter-wave plate (λ/4) and a polarizing beam splitter (PBS), and then collected onto quadrant photodiodes (QPD). The resulting signals were low-pass filtered with a cutoff frequency of 2.4 kHz for anti-aliasing purposes (Filter) and the sum signal was offset amplified (Amp). PD and OI denote photodiodes and optical isolators, respectively.

Fig. 3
Fig. 3

Alignment of the tip to the optical axis of the laser (green) used for label-free imaging. (a) For increased precision, we aligned the position of the surface with respect to the laser foci by scattering a second laser beam (blue) off a silicon post. (b) The QPD sum signal as a function of tip position in x (grey solid line) and y (purple dashed line) aligned to maximize the sum signal. (c) The final alignment of the QPD sum signal as a function of lateral position after positioning to compensate for the fixed offset between the optical and the AFM image.

Fig. 4
Fig. 4

Effects on the image of offset amplification and tip presence near the surface. When the tip was far (~2 mm) from the surface (a–c), the signal before amplification (b) was nearly lost in the noise, but the amplified image has S/N ≈20. Interestingly, with the tip near the surface (~3 μm, d–e), the membrane patch was clearly resolved even before amplification (e), though amplification still improved image quality (f). Both of these images show an asymmetric contrast along the y-axis – the long axis of the cantilever. Pixel spacing is 20 nm in all images. Amplified images were re-zeroed in post processing.

Fig. 5
Fig. 5

Spatial registration between optical and AFM images. When the tip is positioned at its optical center, an optical image (a) and AFM image (b) of the same region show the same feature, but with an offset. (c) Cross-correlation analysis was used to quantify this offset to be 100 nm in x and 300 nm in y. After centering the tip to account for this effect, an AFM image (d) and an optical image (e) of the same area. Cross-correlation analysis (f) showed nanoscale alignment of the two images (40 nm in x and 30 nm in y). Pixel size was 4 nm and 10 nm in the AFM and optical images, respectively.

Fig. 6
Fig. 6

Edges highlighted on the x and y channels of the QPD. (a) The sum signal. (b) The signal from the x channel highlights the left and right edges of the feature. (c) Similarly, the signal from the y channel highlights the top and bottom edges of the feature.

Metrics