Abstract

We show, based on theoretical analysis and realistic simulations, how a grating embedded in a dielectric substrate can excite surface plasmon polaritons (SPPs) on the top side of a flat metal film far removed from the grating. This remote SPP excitation is characterized by a narrow spectral bandwidth and a high near-field intensity relative to the standard approach for exciting SPPs. The simplicity of the structure and the fact that it requires only normally incident light should make it relevant to the many applications that benefit from high quality SPPs on a flat metal film.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
    [CrossRef]
  2. V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
    [CrossRef]
  3. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004).
    [CrossRef]
  4. J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett. 85(1), 94 (2004).
    [CrossRef]
  5. J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
    [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  7. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
    [CrossRef] [PubMed]
  8. A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
    [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  10. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  11. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
    [CrossRef] [PubMed]
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, Berlin, 1988).
  13. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef]
  14. T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
    [CrossRef] [PubMed]
  15. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).
  16. T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86(14), 141105 (2005).
    [CrossRef]
  17. J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polaritons propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77(12), 125407 (2008).
    [CrossRef]
  18. M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
    [CrossRef]
  19. E. Hecht, Optics, 4th Edition (Addison-Wesley, Reading, MA, 2001).
    [PubMed]
  20. F. Ma and X. Liu, “Phase shift and penetration depth of metal mirrors in a microcavity structure,” Appl. Opt. 46(25), 6247–6250 (2007).
    [CrossRef] [PubMed]
  21. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
    [CrossRef]
  22. J. Renger, S. Grafstrom, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surface and thin films,” Phys. Rev. B 76(4), 045431 (2007).
    [CrossRef]
  23. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
    [CrossRef] [PubMed]

2009 (3)

J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
[CrossRef] [PubMed]

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

2008 (1)

J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polaritons propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77(12), 125407 (2008).
[CrossRef]

2007 (4)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

J. Renger, S. Grafstrom, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surface and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

F. Ma and X. Liu, “Phase shift and penetration depth of metal mirrors in a microcavity structure,” Appl. Opt. 46(25), 6247–6250 (2007).
[CrossRef] [PubMed]

2006 (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (3)

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
[CrossRef] [PubMed]

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004).
[CrossRef]

J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett. 85(1), 94 (2004).
[CrossRef]

1999 (2)

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1981 (1)

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[CrossRef]

Abdula, D.

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

Babonneau, D.

J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
[CrossRef] [PubMed]

Baca, A.

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

Banks, T. R.

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

Barnes, W. L.

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Cambrea, L. R.

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

Camelio, S.

J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
[CrossRef] [PubMed]

Chang, S. H.

Chen, C. K.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[CrossRef]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

de Castro, A. R. B.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[CrossRef]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Ebbesen, T. W.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Eng, L. M.

J. Renger, S. Grafstrom, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surface and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Feld, M.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Fernandez, H.

J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
[CrossRef] [PubMed]

Fukuta, K.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004).
[CrossRef]

García-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Girardeau, T.

J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
[CrossRef] [PubMed]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Grafstrom, S.

J. Renger, S. Grafstrom, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surface and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Gray, S. K.

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polaritons propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77(12), 125407 (2008).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86(14), 141105 (2005).
[CrossRef]

S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
[CrossRef] [PubMed]

T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
[CrossRef] [PubMed]

Hamanaka, Y.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004).
[CrossRef]

Haslett, T.

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

Huang, J. P.

J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett. 85(1), 94 (2004).
[CrossRef]

Huynh, W.

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

Imre, A.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Lee, T. W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86(14), 141105 (2005).
[CrossRef]

T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Liu, X.

Liz-Marzán, L. M.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Ma, F.

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Markel, V. A.

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

Martín-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Menges, B.

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

Mittler-Neher, S.

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

Montgomery, J. M.

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polaritons propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77(12), 125407 (2008).
[CrossRef]

Moskovits, M.

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

Mulvaney, P.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004).
[CrossRef]

Nakamura, A.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004).
[CrossRef]

Nuzzo, R. G.

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Perelman, L.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Renger, J.

J. Renger, S. Grafstrom, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surface and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Rogers, J. A.

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Schatz, G. C.

Shalaev, V.

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

Shen, Y. R.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[CrossRef]

Soares, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Solis, J.

J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Tay, L.

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Toudert, J.

J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
[CrossRef] [PubMed]

Truong, T. T.

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Vlasko-Vlasov, V.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wedge, S.

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Weisser, M.

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

Welp, U.

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yao, J.

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

Yu, K. W.

J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett. 85(1), 94 (2004).
[CrossRef]

Zhang, P.

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004).
[CrossRef]

J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett. 85(1), 94 (2004).
[CrossRef]

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86(14), 141105 (2005).
[CrossRef]

A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009).
[CrossRef]

Nanotechnology (1)

J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009).
[CrossRef] [PubMed]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (3)

J. Renger, S. Grafstrom, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surface and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polaritons propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77(12), 125407 (2008).
[CrossRef]

V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999).
[CrossRef]

Other (3)

E. Hecht, Optics, 4th Edition (Addison-Wesley, Reading, MA, 2001).
[PubMed]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, Berlin, 1988).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the remote grating SPP setup. Dot-patterned areas denote metallic regions. Bottom grey and top white regions represent dielectrics with dielectric constants ε 2 and ε 1. Light is incident from below. The embedded grating processes the light to form diffracted light at angle θ GM. (Modes with angle –θ GM are also excited.) The system is infinitely extended in the lateral direction. SPPs on the top metal film are excited when the grating mode angle is matched with the SPP angle.

Fig. 2
Fig. 2

FDTD computed intensity enhancement. (a) Spectral response of an r-grating system, blue solid line, and a conventional ATR setup, red dashed line. (b) Intensity distribution corresponding to the peak wavelength (811 nm). (Three unit cells are shown to give a clearer visual image of the excitation.)The color scale represents normalized intensity by incident light and metal grating bars and top metal film are denoted with white lines.

Fig. 3
Fig. 3

Peak intensity enhancement and FWHM of SPP peaks as a function of the width of grating metal bar, w. A blue solid line with open circle marks and a green solid line with asterisk marks represent maximum intensity enhancement and FWHM at each w, respectively.

Fig. 4
Fig. 4

Intensity enhancement, (a), and FWHM, (b), of SPP peaks as a function of the distance between grating metal layer and top metal film, h.

Fig. 5
Fig. 5

Transition from an r-grating to a conventional BW-SPP type grating. Intensity distributions over one grating period with different h, (a) 50 nm, (b) 10 nm, and (c) 0 nm are shown. Highly localized fields between grating bar and metal film are visible in h = 10 nm case with decreased SPP intensity. White lines denote metal structures. (In (b), metal structures are not outlined in order to show clearly the localized intensity between the top of the grating and the bottom of the film.)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin θ GM = m λ 0 P n 2 ,
sin θ SPP = ε metal ( λ 0 )     ε 1 ε 2 [ ε metal ( λ 0 ) + ε 1 ] ,
m λ 0 P = ε metal ( λ 0 )     ε 1 [ ε metal ( λ 0 ) + ε 1 ] .
4 π n 2 h cos θ FP λ 0 = ( 2 j ) π     or     ( 2 j + 1 ) π ,

Metrics