Abstract

We present a simple and easily implementable scheme for multiplexed Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy and microscopy using a single femtosecond pulse, shaped with a narrow spectral notch. We show that a tunable spectral notch, shaped by a resonant photonic crystal slab, can serve as a narrowband, optimally time-delayed probe, resolving a broad vibrational spectrum with high spectral resolution in a single-shot measurement. Our single-source, single-beam scheme allows the simple transformation of any multiphoton microscope with adequate bandwidth into a nearly alignment-free CARS microscope.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Schrader, Infrared and Raman Spectroscopy (VCH, Weinheim, 1995).
  2. C. L. Evans and S. X. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
    [CrossRef]
  3. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–81 (2005).
    [CrossRef]
  4. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [CrossRef] [PubMed]
  5. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
    [CrossRef]
  6. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
    [CrossRef] [PubMed]
  7. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes CARS spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208–9215 (2003).
    [CrossRef]
  8. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
    [CrossRef] [PubMed]
  9. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
    [CrossRef] [PubMed]
  10. B. C. Chen and S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
    [CrossRef] [PubMed]
  11. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express 17(14), 11259–11266 (2009).
    [CrossRef] [PubMed]
  12. B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
    [CrossRef] [PubMed]
  13. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
    [CrossRef]
  14. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48(4), B17–B22 (2009).
    [CrossRef] [PubMed]
  15. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000).
    [CrossRef]
  16. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33(11), 2038 (1997).
    [CrossRef]
  17. A. Thayil, A. Muriano, J. P. Salvador, R. Galve, M. P. Marco, D. Zalvidea, P. Loza-Alvarez, T. Katchalski, E. Grinvald, A. A. Friesem, and S. Soria, “Nonlinear immunofluorescent assay for androgenic hormones based on resonant structures,” Opt. Express 16(17), 13315–13322 (2008).
    [CrossRef] [PubMed]
  18. V. L. da Silva, Y. Silberberg, and J. P. Heritage, “Nonlinear pulse shaping and causality,” Opt. Lett. 18(8), 580 (1993).
    [CrossRef] [PubMed]
  19. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
    [CrossRef] [PubMed]
  20. W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
    [CrossRef]
  21. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-band laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
    [CrossRef]
  22. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [CrossRef] [PubMed]
  23. B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
    [CrossRef]
  24. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
    [CrossRef] [PubMed]
  25. X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008).
    [CrossRef]
  26. D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
    [CrossRef]
  27. B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
    [CrossRef]
  28. A. Natan, O. Katz, S. Rosenwaks, and Y. Silberberg, “Single-pulse standoff nonlinear Raman spectroscopy using shaped femtosecond pulses,” in Proceedings of Ultrafast Phenomena XVI, (Springer Series in Chemical Physics, Vol. 92, 2009), pp. 985–987.
  29. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
    [CrossRef] [PubMed]
  30. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc. 40(7), 726–731 (2009).
    [CrossRef]

2009

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express 17(14), 11259–11266 (2009).
[CrossRef] [PubMed]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48(4), B17–B22 (2009).
[CrossRef] [PubMed]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[CrossRef]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[CrossRef] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc. 40(7), 726–731 (2009).
[CrossRef]

2008

X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008).
[CrossRef]

A. Thayil, A. Muriano, J. P. Salvador, R. Galve, M. P. Marco, D. Zalvidea, P. Loza-Alvarez, T. Katchalski, E. Grinvald, A. A. Friesem, and S. Soria, “Nonlinear immunofluorescent assay for androgenic hormones based on resonant structures,” Opt. Express 16(17), 13315–13322 (2008).
[CrossRef] [PubMed]

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[CrossRef]

B. C. Chen and S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

C. L. Evans and S. X. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef]

2007

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

2006

2005

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–81 (2005).
[CrossRef]

2004

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-band laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

2003

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes CARS spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208–9215 (2003).
[CrossRef]

2002

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[CrossRef]

2000

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000).
[CrossRef]

1997

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33(11), 2038 (1997).
[CrossRef]

1993

Alexandrou, A.

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Beaurepaire, E.

Bonn, M.

Borri, P.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[CrossRef]

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Chen, B. C.

B. C. Chen and S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

Cicerone, M. T.

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc. 40(7), 726–731 (2009).
[CrossRef]

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

da Silva, V. L.

Dantus, M.

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes CARS spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208–9215 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[CrossRef]

Enejder, A. M.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-band laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Evans, C. L.

C. L. Evans and S. X. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef]

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Friesem, A. A.

Galve, R.

Grinvald, E.

Harris, D. A.

Hashimoto, H.

Hellerer, T.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-band laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Hepburn, J. W.

X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008).
[CrossRef]

Heritage, J. P.

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Isobe, K.

Jia, Y.

Joffre, M.

Kannari, F.

Katchalski, T.

Kattawar, G. W.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[CrossRef]

Kawano, H.

Konorov, S. O.

X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008).
[CrossRef]

Langbein, W.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[CrossRef]

Lee, Y. J.

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc. 40(7), 726–731 (2009).
[CrossRef]

Li, H.

Lim, S. H.

B. C. Chen and S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc. 40(7), 726–731 (2009).
[CrossRef]

Loza-Alvarez, P.

Lozovoy, V. V.

Lucht, R. P.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Marco, M. P.

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

Midorikawa, K.

Milner, V.

X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008).
[CrossRef]

Miyawaki, A.

Mizuno, H.

Moffatt, D. J.

Motzkus, M.

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[CrossRef]

Müller, M.

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Muriano, A.

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[CrossRef]

Ogilvie, J. P.

Opatrny, T.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes CARS spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208–9215 (2003).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[CrossRef]

Pegoraro, A. F.

Pestov, D.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Pezacki, J. P.

Pilloff, H.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Rebane, A.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Ridsdale, A.

Rinia, H. A.

Rocha-Mendoza, I.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33(11), 2038 (1997).
[CrossRef]

Rosenwaks, S.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[CrossRef]

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Salvador, J. P.

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Scully, M. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33(11), 2038 (1997).
[CrossRef]

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes CARS spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208–9215 (2003).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

V. L. da Silva, Y. Silberberg, and J. P. Heritage, “Nonlinear pulse shaping and causality,” Opt. Lett. 18(8), 580 (1993).
[CrossRef] [PubMed]

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Soria, S.

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Stolow, A.

Suda, A.

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Tanaka, M.

Thayil, A.

Vartiainen, E. M.

Volkmer, A.

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–81 (2005).
[CrossRef]

von Vacano, B.

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[CrossRef]

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000).
[CrossRef]

Wohlleben, W.

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[CrossRef]

Wrzesinski, P. J.

Xie, S. X.

C. L. Evans and S. X. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef]

Xu, B.

Xu, X. G.

X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008).
[CrossRef]

Zalvidea, D.

Zhi, M.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Zubairy, M. S.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Zumbusch, A.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-band laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Annu. Rev. Anal. Chem.

C. L. Evans and S. X. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[CrossRef]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[CrossRef]

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-band laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

IEEE J. Quantum Electron.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33(11), 2038 (1997).
[CrossRef]

J. Chem. Phys.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes CARS spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208–9215 (2003).
[CrossRef]

J. Phys. Chem. B

B. C. Chen and S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys.

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–81 (2005).
[CrossRef]

J. Raman Spectrosc.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006).
[CrossRef]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc. 40(7), 726–731 (2009).
[CrossRef]

Nat. Phys.

X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008).
[CrossRef]

Nature

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

Phys. Rev. A

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

Phys. Rev. Lett.

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000).
[CrossRef]

Science

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Other

B. Schrader, Infrared and Raman Spectroscopy (VCH, Weinheim, 1995).

A. Natan, O. Katz, S. Rosenwaks, and Y. Silberberg, “Single-pulse standoff nonlinear Raman spectroscopy using shaped femtosecond pulses,” in Proceedings of Ultrafast Phenomena XVI, (Springer Series in Chemical Physics, Vol. 92, 2009), pp. 985–987.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Various approaches for CARS spectroscopy using ultrashort pulses. The corresponding energy-level diagrams (left), and the spectral- and time-domain pictures (center and right). (a) conventional multi-beam CARS where a single vibrational level is excited and probed by narrowband pump and Stokes beams from synchronized sources; (b) Multiplex CARS utilizing a wideband ultrashort Stokes pulse and a narrowband probe beam, simultaneously exciting and probing several vibrational levels; (c) The single-pulse, single beam CARS technique presented in this work, where a single femtosecond pulse is shaped with a narrow notch by a resonant photonic crystal slab filter (see Fig. 2). The wideband pulse coherently excites a band of vibrational levels, and the narrowband notch effectively produces a time delayed temporally extended probe, yielding a spectral resolution two orders of magnitude better than the pulse bandwidth. The vibrational spectrum is resolved by measuring the blue shift of the induced interference features in the CARS spectrum from the shaped notch frequency.

Fig. 2
Fig. 2

Experimental setup for notch-shaped single-pulse CARS using a resonant photonic crystal slab (RPCS). (a) The optical setup: The wideband excitation pulse (i), is shaped with a tunable narrowband spectral notch by the RPCS filter (ii). The spectral notch serves as a narrow probe for the CARS process generating narrow well-defined features in the CARS spectrum, which are blue-shifted from the probe by the vibrational frequencies (iii). (LPF - long-pass filter, SPF - short-pass filter); (b) A schematic diagram of the RPCS double grating waveguide structure used in this work, comprised of several layers: a glass substrate, a sub-wavelength grating, a thin dielectric waveguide and another sub-wavelength grating. For a given beam incident angle, a narrow spectral band is on resonance with the RPCS and is coupled to a ‘guided-mode’, resulting in almost total reflection for the resonant wavelength and a tunable narrow notch in the transmission spectrum. (c) Atomic force microscopy measurements of the RPCS surface revealing the sub-wavelength grating (taken from [17]).

Fig. 3
Fig. 3

Experimental results: (a) Several RPCS notch-shaped excitation spectra. The notch location can be continuously tuned by the RPCS angle relative to the excitation beam. The notch has a measured spectral width of 1.3nm FWHM (20cm−1), and a rejection of >17dB; (b) Single-shot measured CARS spectra from toluene at two slightly shifted notch locations. In each measurement, sharp peak-and-dip interference features, corresponding to toluene 787cm−1 and 1005cm−1 vibrational lines appear in the plotted CARS spectrum (marked by arrows). These features are blue-shifted from the notch location by the vibrational frequency. The raw measured CARS spectra are in good agreement with numerical simulations using Eqs. (1-2) (dashed line, see materials and methods); (c) Resolved vibrational spectrum of toluene retrieved from (b) using Eq. (4) (materials and methods), with the known Raman lines depicted in gray.

Fig. 5
Fig. 5

Single-beam vibrational imaging using RPCS notch-shaped single-pulse CARS: In (a-c) the sample is a mixture of water and perfluorodecalin (Sigma-Aldrich P9900):: (a) transmission image; (b) vibrational contrast image based on the 685cm−1 band of perfluorodecalin (Scale bar 10μm); (c) spatially resolved vibrational spectra reveal the vibrational spectrum of perfluorodecalin inside the droplet. In (d-f) the sample is potato cell with several starch granules: (d) potato slice transmission image; (e) corresponding vibrational contrast image based on the characteristic 474cm−1 skeletal mode of starch (Scale bar 10μm); (f) Spatially resolved vibrational spectra inside and outside a granule, reveals the starch spectrum which is confined within the granules.

Fig. 4
Fig. 4

Resolved vibrational spectra from pure samples: Acetone (a), ethanol (b), and a 25% chloroform / 75% toluene mixture (c), obtained using the RPCS single-pulse CARS technique using Eq. (4) (see material and methods). The known Raman lines of the samples are depicted in gray. Spectra shown are peak-normalized.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P r ( 3 ) ( ω ) G 0 d Ω E ( ω Ω ) ( Ω v i b Ω ) + i Γ A ( Ω )
I m e a s ( ω ) | P n r ( ω ) + P r ( ω ) | 2 | P n r ( ω ) | 2 + 2 | P n r ( ω ) | | P r ( ω ) | cos ( φ ( ω ) )
P r ( ω ) I m e a s ( ω ) I n r ( ω ) P n r ( ω )
I r e s o l v e d ( ω ) = 1 A ( ω ω p r ) [ I 1 m e a s ( ω ) P n r ( ω ) I 2 m e a s ( ω ) P n r ( ω ) ]

Metrics