Abstract

Methods of three-dimensional deconvolution with a point-spread function as frequently employed in optical microscopy to reconstruct true three-dimensional distribution of objects are extended to holographic reconstructions. Two such schemes have been developed and are discussed: an instant deconvolution using the Wiener filter as well as an iterative deconvolution routine. The instant 3d-deconvolution can be applied to restore the positions of volume-spread objects such as small particles. The iterative deconvolution can be applied to restore the distribution of complex and extended objects. Simulated and experimental examples are presented and demonstrate artifact and noise free three-dimensional reconstructions from a single two-dimensional holographic record.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
    [CrossRef]
  2. L. P. Yaroslavsky, and N. S. Merzlykaov, Methods of digital holography, (Consultants Bureau, New York, 1980).
  3. U. Schnars, and W. Jueptner, Digital holography. Digital hologram recording, numerical reconstruction, and related techniques, (Springer Berlin Heidelberg, 2010).
  4. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express 13(18), 6738–6749 (2005).
    [CrossRef] [PubMed]
  5. J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006).
    [CrossRef] [PubMed]
  6. D. K. Singh and P. K. Panigrahi, “Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles,” Opt. Express 18(3), 2426–2448 (2010).
    [CrossRef] [PubMed]
  7. J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
    [CrossRef] [PubMed]
  8. P. J. Shaw, “Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging,” in Handbook of biological confocal microscopy, J. B. Pawley, ed., (Plenum Press, New York and London, 1995).
  9. J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
    [CrossRef] [PubMed]
  10. P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
    [CrossRef]
  11. W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31(5), 1076–1097 (2001).
    [PubMed]
  12. I. T. Young, “Image fidelity: Characterizing the imaging transfer function,” Methods Cell. Biol. 30, 2–47 (1989).
  13. T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Opt. Eng. 41(8), 1829–1839 (2002).
    [CrossRef]
  14. H. Meng and F. Hussain, “Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8(1-4), 33–52 (1991).
    [CrossRef]
  15. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
    [CrossRef]
  16. R. Gold, “An iterative unfolding method for matrices,” Tech. Rep. ANL-6984 Argonne National Laboratory, Argonne, Illinois.
  17. J. W. Goodman, “Introduction to Fourier optics,” (Roberts & Company Publishers, Engelwood, Colorado) 2005, Chap. 3.
  18. S. A. Saq'an, A. S. Ayesh, A. M. Zihlif, E. Martuscelli, and G. Ragosta, “Physical properties of polystyrene/alum composites,” Polym. Test. 23(7), 739–745 (2004).
    [CrossRef]

2010

2006

J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006).
[CrossRef] [PubMed]

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
[CrossRef]

2005

2004

S. A. Saq'an, A. S. Ayesh, A. M. Zihlif, E. Martuscelli, and G. Ragosta, “Physical properties of polystyrene/alum composites,” Polym. Test. 23(7), 739–745 (2004).
[CrossRef]

2002

T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Opt. Eng. 41(8), 1829–1839 (2002).
[CrossRef]

2001

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31(5), 1076–1097 (2001).
[PubMed]

2000

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[CrossRef]

1999

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

1991

H. Meng and F. Hussain, “Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8(1-4), 33–52 (1991).
[CrossRef]

1989

I. T. Young, “Image fidelity: Characterizing the imaging transfer function,” Methods Cell. Biol. 30, 2–47 (1989).

1967

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Alfieri, D.

Ayesh, A. S.

S. A. Saq'an, A. S. Ayesh, A. M. Zihlif, E. Martuscelli, and G. Ragosta, “Physical properties of polystyrene/alum composites,” Polym. Test. 23(7), 739–745 (2004).
[CrossRef]

Conchello, J. A.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Cooper, J.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Coppola, G.

De Nicola, S.

Ferraro, P.

Finizio, A.

Garcia-Sucerquia, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Grilli, S.

Hussain, F.

H. Meng and F. Hussain, “Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8(1-4), 33–52 (1991).
[CrossRef]

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Karpova, T.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Klages, P.

Kreis, T. M.

T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Opt. Eng. 41(8), 1829–1839 (2002).
[CrossRef]

Kreuzer, H. J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Martuscelli, E.

S. A. Saq'an, A. S. Ayesh, A. M. Zihlif, E. Martuscelli, and G. Ragosta, “Physical properties of polystyrene/alum composites,” Polym. Test. 23(7), 739–745 (2004).
[CrossRef]

McNally, J. G.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Meng, H.

H. Meng and F. Hussain, “Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8(1-4), 33–52 (1991).
[CrossRef]

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[CrossRef]

Nehorai, A.

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
[CrossRef]

Panigrahi, P. K.

Pierattini, G.

Ragosta, G.

S. A. Saq'an, A. S. Ayesh, A. M. Zihlif, E. Martuscelli, and G. Ragosta, “Physical properties of polystyrene/alum composites,” Polym. Test. 23(7), 739–745 (2004).
[CrossRef]

Saq'an, S. A.

S. A. Saq'an, A. S. Ayesh, A. M. Zihlif, E. Martuscelli, and G. Ragosta, “Physical properties of polystyrene/alum composites,” Polym. Test. 23(7), 739–745 (2004).
[CrossRef]

Sarder, P.

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
[CrossRef]

Schaefer, L. H.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31(5), 1076–1097 (2001).
[PubMed]

Singh, D. K.

Striano, V.

Swedlow, J. R.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31(5), 1076–1097 (2001).
[PubMed]

Wallace, W.

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31(5), 1076–1097 (2001).
[PubMed]

Xu, W. B.

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[CrossRef]

Young, I. T.

I. T. Young, “Image fidelity: Characterizing the imaging transfer function,” Methods Cell. Biol. 30, 2–47 (1989).

Zihlif, A. M.

S. A. Saq'an, A. S. Ayesh, A. M. Zihlif, E. Martuscelli, and G. Ragosta, “Physical properties of polystyrene/alum composites,” Polym. Test. 23(7), 739–745 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Biotechniques

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31(5), 1076–1097 (2001).
[PubMed]

Fluid Dyn. Res.

H. Meng and F. Hussain, “Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8(1-4), 33–52 (1991).
[CrossRef]

IEEE Signal Process. Mag.

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
[CrossRef]

Methods

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Methods Cell. Biol.

I. T. Young, “Image fidelity: Characterizing the imaging transfer function,” Methods Cell. Biol. 30, 2–47 (1989).

Opt. Eng.

T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Opt. Eng. 41(8), 1829–1839 (2002).
[CrossRef]

Opt. Express

Opt. Laser Technol.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[CrossRef]

Polym. Test.

S. A. Saq'an, A. S. Ayesh, A. M. Zihlif, E. Martuscelli, and G. Ragosta, “Physical properties of polystyrene/alum composites,” Polym. Test. 23(7), 739–745 (2004).
[CrossRef]

Other

L. P. Yaroslavsky, and N. S. Merzlykaov, Methods of digital holography, (Consultants Bureau, New York, 1980).

U. Schnars, and W. Jueptner, Digital holography. Digital hologram recording, numerical reconstruction, and related techniques, (Springer Berlin Heidelberg, 2010).

R. Gold, “An iterative unfolding method for matrices,” Tech. Rep. ANL-6984 Argonne National Laboratory, Argonne, Illinois.

J. W. Goodman, “Introduction to Fourier optics,” (Roberts & Company Publishers, Engelwood, Colorado) 2005, Chap. 3.

P. J. Shaw, “Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging,” in Handbook of biological confocal microscopy, J. B. Pawley, ed., (Plenum Press, New York and London, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics