Abstract

Counter-propagating optical traps are widely used where long working distances, axially symmetric trapping potentials, or standing light waves are required. We demonstrate that optical phase-conjugation can automatically provide a counter-propagating replica of a wide range of incident light fields in an optical trapping configuration. The resulting counter-propagating traps are self-adjusting and adapt dynamically to changes of the input light field. It is shown that not only single counter-propagating traps can be implemented by phase-conjugation, but also structured light fields can be used. This step towards more complex traps enables advanced state-of-the-art applications where multiple traps or other elaborated trapping scenarios are required. The resulting traps cannot only be used statically, but they can be rearranged in real-time and allow for interactive dynamic manipulation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
    [CrossRef]
  2. K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nanotoday 1(1), 18–27 (2006).
  3. M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published).
    [PubMed]
  4. F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract .
    [CrossRef]
  5. D. Altman, H. L. Sweeney, and J. A. Spudich, “The mechanism of myosin VI translocation and its load-induced anchoring,” Cell 116(5), 737–749 (2004).
    [CrossRef] [PubMed]
  6. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
    [CrossRef]
  7. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
    [PubMed]
  8. M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
    [CrossRef]
  9. G. J. Brouhard, H. T. Schek, and A. J. Hunt, “Advanced optical tweezers for the study of cellular and molecular biomechanics,” IEEE Trans. Biomed. Eng. 50, 121 (2003).
    [CrossRef] [PubMed]
  10. K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
    [CrossRef] [PubMed]
  11. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  12. M. Petrovic, M. Beli, C. Denz, and Y. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photon. Rev. (to be published).
  13. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [CrossRef]
  14. P. Zemánek, A. Jonás, L. Srámek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24(21), 1448–1450 (1999).
    [CrossRef]
  15. J. S. Dam, P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, “Fully automated beam-alignment and single stroke guided manual alignment of counter-propagating multi-beam based optical micromanipulation systems,” Opt. Express 15(13), 7968–7973 (2007).
    [CrossRef] [PubMed]
  16. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86(7), 074103 (2005).
    [CrossRef]
  17. R. A. Fisher, ed., Optical Phase Conjugation (Academic Press, Inc., 1983).
  18. W. Wang, A. E. Chiou, G. J. Sonek, and M. W. Berns, “Self-aligned dual-beam optical laser trap using photorefractive phase conjugation,” J. Opt. Soc. Am. B 14(4), 697 (1997).
    [CrossRef]
  19. G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26(3), 131–191 (2002).
    [CrossRef]
  20. J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5(12), 519 (1980).
    [CrossRef] [PubMed]
  21. M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17(25), 22791–22799 (2009).
    [CrossRef]
  22. P. Xie, J. H. Dai, P. Y. Wang, and H. J. Zhang, “Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity,” Phys. Rev. A 55(4), 3092–3100 (1997).
    [CrossRef]
  23. M. Cronin-Golomb, “Nonlinear optics and phase conjugation in photorefractive materials,” J. Cryst. Growth 109(1-4), 340 (1991).
    [CrossRef]
  24. E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
    [CrossRef]
  25. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
    [CrossRef]
  26. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
    [CrossRef] [PubMed]
  27. D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, “Efficient self-pumped phase conjugation at near-infrared wavelengths using cobalt-doped BaTiO3,” Opt. Lett. 15(22), 1279–1281 (1990).
    [CrossRef] [PubMed]
  28. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005).
    [CrossRef] [PubMed]
  29. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [CrossRef] [PubMed]

2010 (1)

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract .
[CrossRef]

2009 (2)

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17(25), 22791–22799 (2009).
[CrossRef]

2008 (1)

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

2007 (1)

2006 (1)

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nanotoday 1(1), 18–27 (2006).

2005 (2)

2004 (1)

D. Altman, H. L. Sweeney, and J. A. Spudich, “The mechanism of myosin VI translocation and its load-induced anchoring,” Cell 116(5), 737–749 (2004).
[CrossRef] [PubMed]

2003 (1)

G. J. Brouhard, H. T. Schek, and A. J. Hunt, “Advanced optical tweezers for the study of cellular and molecular biomechanics,” IEEE Trans. Biomed. Eng. 50, 121 (2003).
[CrossRef] [PubMed]

2002 (3)

G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26(3), 131–191 (2002).
[CrossRef]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
[PubMed]

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

2000 (2)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

1999 (2)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

P. Zemánek, A. Jonás, L. Srámek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24(21), 1448–1450 (1999).
[CrossRef]

1998 (1)

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[CrossRef]

1997 (2)

W. Wang, A. E. Chiou, G. J. Sonek, and M. W. Berns, “Self-aligned dual-beam optical laser trap using photorefractive phase conjugation,” J. Opt. Soc. Am. B 14(4), 697 (1997).
[CrossRef]

P. Xie, J. H. Dai, P. Y. Wang, and H. J. Zhang, “Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity,” Phys. Rev. A 55(4), 3092–3100 (1997).
[CrossRef]

1993 (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

1991 (1)

M. Cronin-Golomb, “Nonlinear optics and phase conjugation in photorefractive materials,” J. Cryst. Growth 109(1-4), 340 (1991).
[CrossRef]

1990 (1)

1980 (1)

1970 (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Alpmann, C.

Altman, D.

D. Altman, H. L. Sweeney, and J. A. Spudich, “The mechanism of myosin VI translocation and its load-induced anchoring,” Cell 116(5), 737–749 (2004).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Baer, T. M.

Beli, M.

M. Petrovic, M. Beli, C. Denz, and Y. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photon. Rev. (to be published).

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Berns, M. W.

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Brouhard, G. J.

G. J. Brouhard, H. T. Schek, and A. J. Hunt, “Advanced optical tweezers for the study of cellular and molecular biomechanics,” IEEE Trans. Biomed. Eng. 50, 121 (2003).
[CrossRef] [PubMed]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Chiou, A. E.

Cooper, J.

Courtial, J.

Cronin-Golomb, M.

M. Cronin-Golomb, “Nonlinear optics and phase conjugation in photorefractive materials,” J. Cryst. Growth 109(1-4), 340 (1991).
[CrossRef]

Dai, J. H.

P. Xie, J. H. Dai, P. Y. Wang, and H. J. Zhang, “Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity,” Phys. Rev. A 55(4), 3092–3100 (1997).
[CrossRef]

Dam, J. S.

Daria, V. R.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86(7), 074103 (2005).
[CrossRef]

R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
[PubMed]

De Cola, L.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published).
[PubMed]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Denz, C.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract .
[CrossRef]

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17(25), 22791–22799 (2009).
[CrossRef]

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published).
[PubMed]

M. Petrovic, M. Beli, C. Denz, and Y. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photon. Rev. (to be published).

Devaux, A.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published).
[PubMed]

Dholakia, K.

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nanotoday 1(1), 18–27 (2006).

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Eriksen, R. L.

Feinberg, J.

Florin, E. L.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Gläsener, S.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published).
[PubMed]

Glückstad, J.

Grier, D. G.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

He, G. S.

G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26(3), 131–191 (2002).
[CrossRef]

Hellwarth, R. W.

Holtmann, F.

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

Horber, J. K. H.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[CrossRef]

Hörner, F.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract .
[CrossRef]

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published).
[PubMed]

Hunt, A. J.

G. J. Brouhard, H. T. Schek, and A. J. Hunt, “Advanced optical tweezers for the study of cellular and molecular biomechanics,” IEEE Trans. Biomed. Eng. 50, 121 (2003).
[CrossRef] [PubMed]

Jonás, A.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

P. Zemánek, A. Jonás, L. Srámek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24(21), 1448–1450 (1999).
[CrossRef]

Jordan, P.

Keirstead, M. S.

Kivshar, Y. S.

M. Petrovic, M. Beli, C. Denz, and Y. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photon. Rev. (to be published).

Krol, J. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Liska, M.

Maier, B.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract .
[CrossRef]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Müller, S.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract .
[CrossRef]

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Padgett, M.

Perch-Nielsen, I. R.

Petrovic, M.

M. Petrovic, M. Beli, C. Denz, and Y. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photon. Rev. (to be published).

Piestun, R.

Pralle, A.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[CrossRef]

Reece, P.

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nanotoday 1(1), 18–27 (2006).

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Rodrigo, P. J.

Rytz, D.

Schek, H. T.

G. J. Brouhard, H. T. Schek, and A. J. Hunt, “Advanced optical tweezers for the study of cellular and molecular biomechanics,” IEEE Trans. Biomed. Eng. 50, 121 (2003).
[CrossRef] [PubMed]

Schonbrun, E.

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Sonek, G. J.

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Spudich, J. A.

D. Altman, H. L. Sweeney, and J. A. Spudich, “The mechanism of myosin VI translocation and its load-induced anchoring,” Cell 116(5), 737–749 (2004).
[CrossRef] [PubMed]

Srámek, L.

Stelzer, E. H. K.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[CrossRef]

Stephens, R. R.

Sweeney, H. L.

D. Altman, H. L. Sweeney, and J. A. Spudich, “The mechanism of myosin VI translocation and its load-induced anchoring,” Cell 116(5), 737–749 (2004).
[CrossRef] [PubMed]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Visscher, K.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Wang, P. Y.

P. Xie, J. H. Dai, P. Y. Wang, and H. J. Zhang, “Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity,” Phys. Rev. A 55(4), 3092–3100 (1997).
[CrossRef]

Wang, W.

Wechsler, B. A.

Woerdemann, M.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract .
[CrossRef]

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17(25), 22791–22799 (2009).
[CrossRef]

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published).
[PubMed]

Wulff, K. D.

Xie, P.

P. Xie, J. H. Dai, P. Y. Wang, and H. J. Zhang, “Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity,” Phys. Rev. A 55(4), 3092–3100 (1997).
[CrossRef]

Zemánek, P.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

P. Zemánek, A. Jonás, L. Srámek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24(21), 1448–1450 (1999).
[CrossRef]

Zhang, H. J.

P. Xie, J. H. Dai, P. Y. Wang, and H. J. Zhang, “Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity,” Phys. Rev. A 55(4), 3092–3100 (1997).
[CrossRef]

Adv. Mater. (1)

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published).
[PubMed]

Appl. Phys. Lett. (1)

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86(7), 074103 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[CrossRef]

Biophys. J. (1)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Cell (1)

D. Altman, H. L. Sweeney, and J. A. Spudich, “The mechanism of myosin VI translocation and its load-induced anchoring,” Cell 116(5), 737–749 (2004).
[CrossRef] [PubMed]

Cytometry (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Electrophoresis (1)

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

G. J. Brouhard, H. T. Schek, and A. J. Hunt, “Advanced optical tweezers for the study of cellular and molecular biomechanics,” IEEE Trans. Biomed. Eng. 50, 121 (2003).
[CrossRef] [PubMed]

J. Biophoton. (1)

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract .
[CrossRef]

J. Cryst. Growth (1)

M. Cronin-Golomb, “Nonlinear optics and phase conjugation in photorefractive materials,” J. Cryst. Growth 109(1-4), 340 (1991).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. Petrovic, M. Beli, C. Denz, and Y. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photon. Rev. (to be published).

Nanotoday (1)

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nanotoday 1(1), 18–27 (2006).

Nature (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (1)

P. Xie, J. H. Dai, P. Y. Wang, and H. J. Zhang, “Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity,” Phys. Rev. A 55(4), 3092–3100 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Prog. Quantum Electron. (1)

G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26(3), 131–191 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Other (1)

R. A. Fisher, ed., Optical Phase Conjugation (Academic Press, Inc., 1983).

Supplementary Material (3)

» Media 1: AVI (814 KB)     
» Media 2: AVI (63 KB)     
» Media 3: AVI (84 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Commonly used counter-propagating trap configuration. (b) Principle idea of counter-propagating traps using optical phase-conjugation.

Fig. 2
Fig. 2

(a) Experimental setup for a single counter-propagating trap. (b-i) Three dimensional trapping of a d = 4 µm polystyrene bead: the bead is trapped at the position of the dashed circle (b,c) and the sample plane is translated transversally (d-g) and axially (h,i), respectively. As the axial potential is relatively weak, the bead needs a few seconds to return to the trapping position in focus after axial displacement (Media 1).

Fig. 3
Fig. 3

(a) Experimental setup for a dual counter-propagating trap. Origin of trap and pump beams is omitted. Inlets show the measured intensity distribution at the indicated planes. (b-i) Trapping of two d = 4 µm beads simultaneously. At t = 0 only one trap is occupied (b). A second bead enters the other trap (c,d) and both are trapped in a stable way until the first bead is pushed out of the trap by another bead (f-i).

Fig. 4
Fig. 4

(a) Experimental setup for a counter-propagating trap using an SLM. Origin of trap and pump beams is omitted. (b,d) Trapping configurations as created with the SLM and measured in the sample plane. (c,e) Corresponding phase-conjugate replicas.

Fig. 5
Fig. 5

Examples of trapping d = 4 µm beads with more complex configurations. (a,b) Two beads in different axial planes. (c-e) Increasing number of beads in various trapping configurations (Media 2).

Fig. 6
Fig. 6

A d = 4 µm polystyrene bead is translated with various step sizes and step frequencies. Each data point represents the majority vote of 10 single measurements (5 and 6 measurements for the small points, respectively). The maximal velocity is indicated for each step size (Media 3).

Metrics