Abstract

We report on the first implementation of a single-photon avalanche diode (SPAD) in 90nm complementary metal oxide semiconductor (CMOS) technology. The detector features an octagonal multiplication region and a guard ring to prevent premature edge breakdown using a standard mask set exclusively. The proposed structure emerged from a systematic study aimed at miniaturization, while optimizing overall performance. The guard ring design is the result of an extensive modeling effort aimed at constraining the multiplication region within a well-defined area where the electric field exceeds the critical value for impact ionization. The device exhibits a dark count rate of 8.1 kHz, a maximum photon detection probability of 9% and the jitter of 398ps at a wavelength of 637nm, all of them measured at room temperature and 0.13V of excess bias voltage. An afterpulsing probability of 32% is achieved at the nominal dead time. Applications include time-of-flight 3D vision, fluorescence lifetime imaging microscopy, fluorescence correlation spectroscopy, and time-resolved gamma/X-ray imaging. Standard characterization of the SPAD was performed in different bias voltages and temperatures.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quatum efficiency single-photon counting system,” Appl. Phys. Lett. 74(8), 1063–1065 (1999).
    [CrossRef]
  2. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [CrossRef] [PubMed]
  3. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” J. Solid-State Circuits 40(9), 1847–1854 (2005).
    [CrossRef]
  4. C. Niclass, M. Sergio, and E. Charbon, “A single Photon Avalanche Diode Array Fabricated in 0.35µm CMOS and based on an Event-Driven Readout for TCSPC Experiments,” Proc. SPIE Optics East (2006).
  5. M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
    [CrossRef]
  6. M. A. Karami, M. Gersbach, and E. Charbon, “A New Single-photon Avalanche Diode in 90nm Standard CMOS Technology”, SPIE Optics and Photonics, (2010).
  7. H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” Electron. Device Lett. 27(11), 887–889 (2006).
    [CrossRef]
  8. C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “ A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Sel. Top. Quantum, Electronics. 13(4), 863–869 (2007).
    [CrossRef]
  9. D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
    [CrossRef]
  10. A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
    [CrossRef]
  11. H. Kwon, M. Kang, B. Park, J. Lee, and S. Park, “The Analysis of Dark Signals in CMOS APS Imagers from the Characterization of Test Structures,” IEEE Trans. Electron. Dev. 51(2), 178–184 (2004).
    [CrossRef]

2009 (1)

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

2007 (2)

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “ A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Sel. Top. Quantum, Electronics. 13(4), 863–869 (2007).
[CrossRef]

D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[CrossRef]

2006 (1)

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” Electron. Device Lett. 27(11), 887–889 (2006).
[CrossRef]

2005 (1)

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” J. Solid-State Circuits 40(9), 1847–1854 (2005).
[CrossRef]

2004 (1)

H. Kwon, M. Kang, B. Park, J. Lee, and S. Park, “The Analysis of Dark Signals in CMOS APS Imagers from the Characterization of Test Structures,” IEEE Trans. Electron. Dev. 51(2), 178–184 (2004).
[CrossRef]

2003 (1)

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

1999 (1)

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quatum efficiency single-photon counting system,” Appl. Phys. Lett. 74(8), 1063–1065 (1999).
[CrossRef]

1996 (1)

Besse, P. A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” J. Solid-State Circuits 40(9), 1847–1854 (2005).
[CrossRef]

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

Charbon, E.

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “ A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Sel. Top. Quantum, Electronics. 13(4), 863–869 (2007).
[CrossRef]

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” J. Solid-State Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Cova, S.

Dalla Betta, G.-F.

D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[CrossRef]

Esener, S. C.

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” Electron. Device Lett. 27(11), 887–889 (2006).
[CrossRef]

Finkelstein, H.

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” Electron. Device Lett. 27(11), 887–889 (2006).
[CrossRef]

Gersbach, M.

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “ A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Sel. Top. Quantum, Electronics. 13(4), 863–869 (2007).
[CrossRef]

Ghioni, M.

Gonzo, L.

D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[CrossRef]

Gosch, M.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

Grant, L.

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “ A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Sel. Top. Quantum, Electronics. 13(4), 863–869 (2007).
[CrossRef]

Hardillier, S.

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Henderson, R.

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “ A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Sel. Top. Quantum, Electronics. 13(4), 863–869 (2007).
[CrossRef]

Hogue, H. H.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quatum efficiency single-photon counting system,” Appl. Phys. Lett. 74(8), 1063–1065 (1999).
[CrossRef]

Hsu, M. J.

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” Electron. Device Lett. 27(11), 887–889 (2006).
[CrossRef]

Kang, M.

H. Kwon, M. Kang, B. Park, J. Lee, and S. Park, “The Analysis of Dark Signals in CMOS APS Imagers from the Characterization of Test Structures,” IEEE Trans. Electron. Dev. 51(2), 178–184 (2004).
[CrossRef]

Kim, J.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quatum efficiency single-photon counting system,” Appl. Phys. Lett. 74(8), 1063–1065 (1999).
[CrossRef]

Kwon, H.

H. Kwon, M. Kang, B. Park, J. Lee, and S. Park, “The Analysis of Dark Signals in CMOS APS Imagers from the Characterization of Test Structures,” IEEE Trans. Electron. Dev. 51(2), 178–184 (2004).
[CrossRef]

Lacaita, A.

Lasser, T.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

Lee, J.

H. Kwon, M. Kang, B. Park, J. Lee, and S. Park, “The Analysis of Dark Signals in CMOS APS Imagers from the Characterization of Test Structures,” IEEE Trans. Electron. Dev. 51(2), 178–184 (2004).
[CrossRef]

Mazaleyart, E.

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Niclass, C.

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “ A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Sel. Top. Quantum, Electronics. 13(4), 863–869 (2007).
[CrossRef]

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” J. Solid-State Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Pancheri, L.

D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[CrossRef]

Park, B.

H. Kwon, M. Kang, B. Park, J. Lee, and S. Park, “The Analysis of Dark Signals in CMOS APS Imagers from the Characterization of Test Structures,” IEEE Trans. Electron. Dev. 51(2), 178–184 (2004).
[CrossRef]

Park, S.

H. Kwon, M. Kang, B. Park, J. Lee, and S. Park, “The Analysis of Dark Signals in CMOS APS Imagers from the Characterization of Test Structures,” IEEE Trans. Electron. Dev. 51(2), 178–184 (2004).
[CrossRef]

Popovic, R. S.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

Richardson, J.

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Rigler, R.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

Rochas, A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” J. Solid-State Circuits 40(9), 1847–1854 (2005).
[CrossRef]

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

Samori, C.

Scandiuzzio, M.

D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[CrossRef]

Serov, A.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

Simoni, A.

D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[CrossRef]

Stoppa, D.

D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[CrossRef]

Takeuchi, S.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quatum efficiency single-photon counting system,” Appl. Phys. Lett. 74(8), 1063–1065 (1999).
[CrossRef]

Yamamoto, Y.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quatum efficiency single-photon counting system,” Appl. Phys. Lett. 74(8), 1063–1065 (1999).
[CrossRef]

Zappa, F.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quatum efficiency single-photon counting system,” Appl. Phys. Lett. 74(8), 1063–1065 (1999).
[CrossRef]

Electron. Device Lett. (1)

H. Finkelstein, M. J. Hsu, and S. C. Esener, “STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology,” Electron. Device Lett. 27(11), 887–889 (2006).
[CrossRef]

IEEE Sel. Top. Quantum, Electronics. (1)

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “ A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Sel. Top. Quantum, Electronics. 13(4), 863–869 (2007).
[CrossRef]

IEEE Trans. Circ. Syst. (1)

D. Stoppa, L. Pancheri, M. Scandiuzzio, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D Imager Based on Single-Photon Avalanche Diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

H. Kwon, M. Kang, B. Park, J. Lee, and S. Park, “The Analysis of Dark Signals in CMOS APS Imagers from the Characterization of Test Structures,” IEEE Trans. Electron. Dev. 51(2), 178–184 (2004).
[CrossRef]

IEEE. Photon. Tech, (1)

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First Fully Integrated 2D-Array of Single Photon Detectors in Standard CMOS Technology,” IEEE. Photon. Tech, 15(7), 963–965 (2003).
[CrossRef]

J. Solid-State Circuits (1)

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” J. Solid-State Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Solid-State Electron. (1)

M. Gersbach, J. Richardson, E. Mazaleyart, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Other (2)

M. A. Karami, M. Gersbach, and E. Charbon, “A New Single-photon Avalanche Diode in 90nm Standard CMOS Technology”, SPIE Optics and Photonics, (2010).

C. Niclass, M. Sergio, and E. Charbon, “A single Photon Avalanche Diode Array Fabricated in 0.35µm CMOS and based on an Event-Driven Readout for TCSPC Experiments,” Proc. SPIE Optics East (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross-section of one of the structures implemented for this family of SPADs.

Fig. 2
Fig. 2

Photomicrograph of the SPAD farm and a detail of the octagonal SPAD in the inset.

Fig. 3
Fig. 3

Electric field distribution of the SPAD above breakdown.

Fig. 4
Fig. 4

Electric field value in a cross-section of SPAD in different depths.

Fig. 5
Fig. 5

The I-V characteristic of the 90nm diode which shows photon counting ability.

Fig. 6
Fig. 6

DCR vs. excess bias voltage for different temperatures.

Fig. 7
Fig. 7

Photon Detection Probability (PDP) at room temperature.

Fig. 8
Fig. 8

Histogram of the time between the laser pulse and the SPAD receiving digital pulse at 405nm wavelength.

Fig. 9
Fig. 9

Afterpulse probability as a function of dead time. In the inset the corresponding autocorrelation.

Tables (1)

Tables Icon

Table 1 Summary of experimental results. All measurements were conducted at room temperature.

Metrics