Abstract

A recently introduced two-channel confocal microscope with correlated detection promises up to 50% improvement in transverse spatial resolution [Simon, Sergienko, Optics Express 18, 9765 (2010)] via the use of photon correlations. Here we achieve similar results in a different manner, introducing a triple-confocal correlated microscope which exploits the correlations present in optical parametric amplifiers. It is based on tight focusing of pump radiation onto a thin sample positioned in front of a nonlinear crystal, followed by coincidence detection of signal and idler photons, each focused onto a pinhole. This approach offers further resolution enhancement in confocal microscopy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Simon and A. V. Sergienko, “The Correlation Confocal Microscope,” Opt. Express 18, 9765–9779 (2010).
    [Crossref] [PubMed]
  2. W. Denk, J. Strickler, and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  3. W. Denk and K. Svoboda, Photon Upmanship: Why Multiphoton Imaging is More than a Gimmick, Neuron 18, 351–357 (1997).
    [Crossref] [PubMed]
  4. T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
    [Crossref] [PubMed]
  5. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit”, J. Opt. Soc. Am. 561463–1472 (1966).
    [Crossref]
  6. R. Heintzmann and M.G.L. Gustafsson, “Subdiffraction resolution in continuous samples”, Nat. Photonics 3, 362–364 (2009).
    [Crossref]
  7. P. Török and T. Wilson, “Rigorous theory for axial resolution in confocal microscopes”, Opt. Commun. 137, 127–135 (1997).
    [Crossref]
  8. T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal microscopes”, Opt. Commun. 141, 298–313 (1997).
    [Crossref]
  9. P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarized light conventional and confocal microscopes”, Opt. Commun. 148, 300–315 (1998).
    [Crossref]
  10. P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers”, J. Mod. Opt. 45, 1681–1698 (1998).
    [Crossref]
  11. C. J. R. Sheppard and J. Felix Aguilar, “Electromagnetic imaging in the confocal microscope”, Opt. Commun. 180, 1–8 (2000).
    [Crossref]

2010 (1)

2009 (1)

R. Heintzmann and M.G.L. Gustafsson, “Subdiffraction resolution in continuous samples”, Nat. Photonics 3, 362–364 (2009).
[Crossref]

2000 (1)

C. J. R. Sheppard and J. Felix Aguilar, “Electromagnetic imaging in the confocal microscope”, Opt. Commun. 180, 1–8 (2000).
[Crossref]

1998 (2)

P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarized light conventional and confocal microscopes”, Opt. Commun. 148, 300–315 (1998).
[Crossref]

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers”, J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

1997 (3)

P. Török and T. Wilson, “Rigorous theory for axial resolution in confocal microscopes”, Opt. Commun. 137, 127–135 (1997).
[Crossref]

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal microscopes”, Opt. Commun. 141, 298–313 (1997).
[Crossref]

W. Denk and K. Svoboda, Photon Upmanship: Why Multiphoton Imaging is More than a Gimmick, Neuron 18, 351–357 (1997).
[Crossref] [PubMed]

1996 (1)

T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. Strickler, and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

1966 (1)

Denk, W.

W. Denk and K. Svoboda, Photon Upmanship: Why Multiphoton Imaging is More than a Gimmick, Neuron 18, 351–357 (1997).
[Crossref] [PubMed]

W. Denk, J. Strickler, and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Felix Aguilar, J.

C. J. R. Sheppard and J. Felix Aguilar, “Electromagnetic imaging in the confocal microscope”, Opt. Commun. 180, 1–8 (2000).
[Crossref]

Gustafsson, M.G.L.

R. Heintzmann and M.G.L. Gustafsson, “Subdiffraction resolution in continuous samples”, Nat. Photonics 3, 362–364 (2009).
[Crossref]

Heintzmann, R.

R. Heintzmann and M.G.L. Gustafsson, “Subdiffraction resolution in continuous samples”, Nat. Photonics 3, 362–364 (2009).
[Crossref]

Higdon, P.

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal microscopes”, Opt. Commun. 141, 298–313 (1997).
[Crossref]

Higdon, P. D.

P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarized light conventional and confocal microscopes”, Opt. Commun. 148, 300–315 (1998).
[Crossref]

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers”, J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

Juškaitis, R.

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal microscopes”, Opt. Commun. 141, 298–313 (1997).
[Crossref]

Klyshko, D.N.

T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
[Crossref] [PubMed]

Lukosz, W.

Pittman, T.B.

T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
[Crossref] [PubMed]

Rubin, M.H.

T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
[Crossref] [PubMed]

Sergienko, A. V.

Sergienko, A.V.

T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
[Crossref] [PubMed]

Sheppard, C. J. R.

C. J. R. Sheppard and J. Felix Aguilar, “Electromagnetic imaging in the confocal microscope”, Opt. Commun. 180, 1–8 (2000).
[Crossref]

Shih, Y.H.

T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
[Crossref] [PubMed]

Simon, D. S.

Strekalov, D.V.

T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
[Crossref] [PubMed]

Strickler, J.

W. Denk, J. Strickler, and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Svoboda, K.

W. Denk and K. Svoboda, Photon Upmanship: Why Multiphoton Imaging is More than a Gimmick, Neuron 18, 351–357 (1997).
[Crossref] [PubMed]

Török, P.

P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarized light conventional and confocal microscopes”, Opt. Commun. 148, 300–315 (1998).
[Crossref]

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers”, J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

P. Török and T. Wilson, “Rigorous theory for axial resolution in confocal microscopes”, Opt. Commun. 137, 127–135 (1997).
[Crossref]

Webb, W. W.

W. Denk, J. Strickler, and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Wilson, T.

P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarized light conventional and confocal microscopes”, Opt. Commun. 148, 300–315 (1998).
[Crossref]

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers”, J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

P. Török and T. Wilson, “Rigorous theory for axial resolution in confocal microscopes”, Opt. Commun. 137, 127–135 (1997).
[Crossref]

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal microscopes”, Opt. Commun. 141, 298–313 (1997).
[Crossref]

J. Mod. Opt. (1)

P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers”, J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

R. Heintzmann and M.G.L. Gustafsson, “Subdiffraction resolution in continuous samples”, Nat. Photonics 3, 362–364 (2009).
[Crossref]

Neuron (1)

W. Denk and K. Svoboda, Photon Upmanship: Why Multiphoton Imaging is More than a Gimmick, Neuron 18, 351–357 (1997).
[Crossref] [PubMed]

Opt. Commun. (4)

P. Török and T. Wilson, “Rigorous theory for axial resolution in confocal microscopes”, Opt. Commun. 137, 127–135 (1997).
[Crossref]

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal microscopes”, Opt. Commun. 141, 298–313 (1997).
[Crossref]

P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarized light conventional and confocal microscopes”, Opt. Commun. 148, 300–315 (1998).
[Crossref]

C. J. R. Sheppard and J. Felix Aguilar, “Electromagnetic imaging in the confocal microscope”, Opt. Commun. 180, 1–8 (2000).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

T.B. Pittman, D.V. Strekalov, D.N. Klyshko, M.H. Rubin, A.V. Sergienko, and Y.H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996).
[Crossref] [PubMed]

Science (1)

W. Denk, J. Strickler, and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Twin photon microscope

Fig. 2
Fig. 2

(Color online) Definitions of pump-related angles. Similarly, the outgoing beams are at angles θe, θo from the optic axis.

Fig. 3
Fig. 3

(Color online) Comparison of PSF’s for the standard confocal microscope (dotted black) and the twin-photon confocal microscope with pump radii of 1 mm (dashed green), 8 mm (dash-dot red), and 12 mm (solid blue). The pump is at 351 nm. The lenses are in air, with radius 2 cm, focal length 2 cm, and numerical aperture N A = 1 / 2 = 0.7.7.

Fig. 4
Fig. 4

(Color online) Alternate version of twin photon microscope with single lens. The beam splitter after the pinhole separates the twin photons for coincidence detection.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

P S F c o n ( x ) = p ˜ 4 ( k x f ) = | J 1 ( k a x / f ) ( k a x / f ) | 4
P S F w f ( x ) = p ˜ 2 ( k x f ) ,
E p ( r , z , t ) = d 2 k e i ω p t e i ( k p z + k r ) E ˜ p ( k ) .
σ p 2 c ω p [ d f p i ( λ π w 0 2 ) f p 2 ] .
E p ( r , z , t ) = E p e i ( ω p t K p z ) e i r 2 / 2 σ p 2 ,
E ^ j ( + ) , D ( r j , t j ) = d 3 k j h k j ( r j , t j ) E ^ j ( + ) ( r j , t j ) ,
h k j ( ξ ) = e i ( k / s 0 ) ξ 2 e i k ξ p ( ξ + s 0 k k ) .
E j ( + ) , D ( r j , t j ) = d 2 k j e i ( k j / s 0 ) r j 2 e i k j r j e i ω j T j p ( r j + s 0 k j k j ) E j a ^ k j ,
A ( T 1 , T 2 ) = d 2 r 0 | E e ( + ) , D ( r ) E o ( + ) , D ( r ) | ψ ( r , y ) .
( r , y ) = ɛ 0 χ E p ( + ) ( r , y ) E e ( ) ( r ) E o ( ) ( r ) + h . c . = A 1 d 3 k e d 3 k o a ^ k e a k o e i ( ω e + ω o ω p ) t e i ( k p k e z k o z ) z × e i ( k e + k o ) r e i | r | 2 / 2 σ p 2 t ( r + y ) + h . c . ,
| ψ ( r , y ) = i h ¯ d t d z ( r ) | 0
= A 2 d 3 k e d 3 k o d t d z a ^ k e a k o e i ( ω e + ω o ω p ) t × e i ( k p k e z k o z ) z e i ( k e + k o ) r e i | r | 2 / 2 σ p 2 t ( r + y ) | 0 .
A ( T 1 , T 2 , y ) = A 3 d 3 k e d 3 k o d 2 r 0 L d z δ ( ω e + ω o ω p ) e i ( k p k e z k o z ) z × t ( r + y ) p ( r + s 0 k e k e ) p ( r + s 0 k o k o ) e i | r | 2 / 2 σ p 2 e i ( k o + k e ) r 2 × e 2 i ( k e + k o ) r e i ( ω e T 1 + ω o T 2 ) .
k o z = K o + ν u o | k o | 2 2 K o
k e z = K e + ν u e N e | k e | cos θ e + | k e | 2 2 K e ( N e cot ψ 1 ) ,
K o = Ω o c n o ( Ω o ) , u o 1 = d d Ω o [ Ω o c n o ( Ω o ) ]
K e = Ω e c n e ( Ω e , ψ ) , u e 1 = d d Ω e [ Ω e c n e ( Ω e , ψ ) ]
N e = 1 n e ( ω e , ψ ) d d ψ n e ( ω e , ψ ) .
A ( T 1 , T 2 ) = A 4 d 2 k e d 2 k o d 2 r d ν 0 L d z e i ν ( T 12 D z ) e 2 i ( k e + k o ) r × e i ( Ω o + Ω e c s 0 / 2 σ p 2 ) ( r 2 / c s 0 ) t ( r + y ) p ( r + s o k e k e ) p ( r + s 0 k o k o ) ,
d ν 0 L d z e i ν ( T 12 D z ) = 0 L d z δ ( T 12 D z ) = Π ( T 12 ) ,
A ( T 1 , T 2 , y ) = A 4 Π ( T 12 ) d 2 k e d 2 k o d 2 r e 2 i ( k e + k o ) r × e i r 2 ( ω p c s 0 1 / 2 σ p 2 ) t ( r + y ) p ( r + s 0 k e k e ) p ( r + s 0 k o k o ) .
σ p 2 i ( c λ p f p 2 π ω p w 0 2 ) i r 0 2 .
A ( T 1 , T 2 , y ) = A 5 Π ( T 12 ) d 2 r e r 2 / 2 η 0 2 t ( r + y ) p ˜ ( 2 ω o s 0 c r ) p ˜ ( 2 ω e s 0 c r ) ,
1 η 0 2 1 r 0 2 2 i ω p s 0 c .
P S F ( y ) = p ˜ 2 ( 2 Ω o s 0 c y ) p ˜ 2 ( 2 Ω e s 0 c y ) e y 2 / r 0 2 .
r 0 = λ p f 2 π w 0 1.6 μ m , R a i r y = 1.22 λ o f 2 a 0.43 μ m .

Metrics