Abstract

Monte Carlo method is applied for simulation of 2D optical coherence tomography (OCT) images of skin-like model. Layer boundaries in skin model feature curved shape which agrees with physiological structure of human skin. The effect of coherence properties of probing radiation on OCT image formation and speckles in the detected OCT signal is considered. The developed model is employed for image simulation both for conventional and polarization dependent time-domain OCT modalities. Simulation of polarized OCT signal is performed using vector approach developed previously for modeling of electromagnetic field transfer in turbid media.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  3. J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
    [CrossRef]
  4. B. E. Bouma, and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002).
  5. V. V. Tuchin, Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics Environment and Material Science (Kluwer Academic, Boston, 2004).
  6. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. 43(25), 5699–5707 (1995).
    [CrossRef]
  7. I. V. Meglinski, “Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique,” Quantum Electron. 31, 1101–1107 (2001).
  8. M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. 38, 486–490 (2008).
    [CrossRef]
  9. R. R. Meier, J.-S. Lee, and D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. 17(20), 3216–3225 (1978).
    [CrossRef] [PubMed]
  10. C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, and C. Roze, “Comparison of iterative and monte carlo methods for calculation of the Aureole about a point source in the earth’s atmosphere,” Appl. Opt. 38(30), 6237–6246 (1999).
    [CrossRef]
  11. E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. 12(10), 2391–2400 (1973).
    [CrossRef] [PubMed]
  12. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
    [CrossRef] [PubMed]
  13. E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. 3(9), 464–468 (2006).
    [CrossRef]
  14. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
    [CrossRef] [PubMed]
  15. M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
    [CrossRef] [PubMed]
  16. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
    [CrossRef]
  17. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005).
    [CrossRef]
  18. M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36(3), 247–252 (2006).
    [CrossRef]
  19. V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. 105(2), 285–291 (2007).
    [CrossRef]
  20. R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
    [CrossRef]
  21. M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007).
    [CrossRef]
  22. I.M. Sobol’, The Monte Carlo Method (The University of Chicago Press, Chicago, 1974).
  23. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  24. D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47(23), 4271–4285 (2002).
    [CrossRef] [PubMed]
  25. D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36(11), 1009–1015 (2006).
    [CrossRef]
  26. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  27. C. Brosseau, Fundamentals of Polarized Light: a Statistical Optics Approach (New York: John Wiley & Sons, 1998).
  28. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (New York: Wiley, 1983)
  29. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
    [CrossRef] [PubMed]
  30. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
    [CrossRef]
  31. M. J. Raković, G. W. Kattawar, M. B. Mehrubeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38(15), 3399–3408 (1999).
    [CrossRef]
  32. D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001).
    [CrossRef]
  33. S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. 14, 886–891 (2004).
  34. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31(30), 6535–6546 (1992).
    [CrossRef] [PubMed]
  35. E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988).
    [CrossRef]
  36. M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter 34(11), 7564–7572 (1986).
    [CrossRef] [PubMed]
  37. F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter 40(4), 2383–2406 (1989).
    [CrossRef] [PubMed]
  38. D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. 2(3), 200–208 (2000).
    [CrossRef]
  39. A. Dogariu, C. Kutsche, P. Likamwa, G. Boreman, and B. Moudgil, “Time-domain depolarization of waves retroreflected from dense colloidal media,” Opt. Lett. 22(9), 585–587 (1997).
    [CrossRef] [PubMed]
  40. V.V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE Press, Bellingham, 2000).
  41. V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE 7573, 75730Z (2010).
    [CrossRef]
  42. P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A 14(12), 3366–3371 (1997).
    [CrossRef]
  43. V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. 96(5), 816–831 (2003).
    [CrossRef]
  44. V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. 248(2-5), 71–368 (1994).
    [CrossRef]
  45. P. K. Milsom, “A ray-optic, Monte Carlo, description of a Gaussian beam waist – applied to reverse saturable absorption,” Appl. Phys. B 70(4), 593–599 (2000).
    [CrossRef]
  46. V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. 110(5), 742–753 (2010).
    [CrossRef]

2010 (2)

V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. 110(5), 742–753 (2010).
[CrossRef]

V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE 7573, 75730Z (2010).
[CrossRef]

2009 (1)

M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[CrossRef] [PubMed]

2008 (1)

M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. 38, 486–490 (2008).
[CrossRef]

2007 (3)

V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. 105(2), 285–291 (2007).
[CrossRef]

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007).
[CrossRef]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

2006 (3)

D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36(11), 1009–1015 (2006).
[CrossRef]

E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. 3(9), 464–468 (2006).
[CrossRef]

M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36(3), 247–252 (2006).
[CrossRef]

2005 (2)

2004 (1)

S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. 14, 886–891 (2004).

2003 (2)

V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. 96(5), 816–831 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2002 (3)

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[CrossRef]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47(23), 4271–4285 (2002).
[CrossRef] [PubMed]

2001 (2)

D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001).
[CrossRef]

I. V. Meglinski, “Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique,” Quantum Electron. 31, 1101–1107 (2001).

2000 (3)

P. K. Milsom, “A ray-optic, Monte Carlo, description of a Gaussian beam waist – applied to reverse saturable absorption,” Appl. Phys. B 70(4), 593–599 (2000).
[CrossRef]

S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
[CrossRef]

D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. 2(3), 200–208 (2000).
[CrossRef]

1999 (4)

1997 (2)

1995 (1)

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. 43(25), 5699–5707 (1995).
[CrossRef]

1994 (1)

V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. 248(2-5), 71–368 (1994).
[CrossRef]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter 40(4), 2383–2406 (1989).
[CrossRef] [PubMed]

1988 (1)

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988).
[CrossRef]

1986 (1)

M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter 34(11), 7564–7572 (1986).
[CrossRef] [PubMed]

1978 (1)

1973 (1)

Agafonov, D. N.

D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001).
[CrossRef]

Agarwal, G. S.

Akkermans, E.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988).
[CrossRef]

Aksenova, E. V.

V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. 96(5), 816–831 (2003).
[CrossRef]

Alarousu, E.

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007).
[CrossRef]

Anderson, D. E.

Bartel, S.

Berrocal, E.

Bonner, R. F.

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. 43(25), 5699–5707 (1995).
[CrossRef]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31(30), 6535–6546 (1992).
[CrossRef] [PubMed]

Boreman, G.

Bourquin, S.

Bucher, E. A.

Bugrova, M. L.

M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[CrossRef] [PubMed]

Cameron, B. D.

Carney, P. S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Churmakov, D. Y.

D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36(11), 1009–1015 (2006).
[CrossRef]

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47(23), 4271–4285 (2002).
[CrossRef] [PubMed]

Coté, G. L.

Cwilich, G.

M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter 34(11), 7564–7572 (1986).
[CrossRef] [PubMed]

Dogariu, A.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Fabritius, T.

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

Gangnus, S. V.

S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. 14, 886–891 (2004).

Gelikonov, V. M.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[CrossRef]

Girasole, T.

Greenhalgh, D. A.

E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. 3(9), 464–468 (2006).
[CrossRef]

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47(23), 4271–4285 (2002).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hielscher, A. H.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

John, S.

F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter 40(4), 2383–2406 (1989).
[CrossRef] [PubMed]

Karamata, B.

Kattawar, G. W.

Khlebtsov, B. N.

M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[CrossRef] [PubMed]

Kirillin, M. Y.

M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36(3), 247–252 (2006).
[CrossRef]

Kirillin, M. Yu.

M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[CrossRef] [PubMed]

M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. 38, 486–490 (2008).
[CrossRef]

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007).
[CrossRef]

Kuranov, R. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[CrossRef]

Kutsche, C.

Kuz’min, V. L.

V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. 110(5), 742–753 (2010).
[CrossRef]

D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36(11), 1009–1015 (2006).
[CrossRef]

V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. 248(2-5), 71–368 (1994).
[CrossRef]

Kuzmin, V. L.

V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE 7573, 75730Z (2010).
[CrossRef]

V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. 105(2), 285–291 (2007).
[CrossRef]

V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. 96(5), 816–831 (2003).
[CrossRef]

Lambelet, P.

Langlois, S.

Lasser, T.

Laubscher, M.

Lavigne, C.

Lee, J.-S.

Leutenegger, M.

Likamwa, P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Linne, M. A.

MacKintosh, F. C.

F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter 40(4), 2383–2406 (1989).
[CrossRef] [PubMed]

Maret, G.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988).
[CrossRef]

Matcher, S. J.

S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. 14, 886–891 (2004).

Maynard, R.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988).
[CrossRef]

Meglinski, I. V.

V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE 7573, 75730Z (2010).
[CrossRef]

V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. 110(5), 742–753 (2010).
[CrossRef]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. 105(2), 285–291 (2007).
[CrossRef]

E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. 3(9), 464–468 (2006).
[CrossRef]

D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36(11), 1009–1015 (2006).
[CrossRef]

M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36(3), 247–252 (2006).
[CrossRef]

S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. 14, 886–891 (2004).

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47(23), 4271–4285 (2002).
[CrossRef] [PubMed]

I. V. Meglinski, “Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique,” Quantum Electron. 31, 1101–1107 (2001).

Mehrubeoglu, M. B.

Meier, R. R.

Milsom, P. K.

P. K. Milsom, “A ray-optic, Monte Carlo, description of a Gaussian beam waist – applied to reverse saturable absorption,” Appl. Phys. B 70(4), 593–599 (2000).
[CrossRef]

Moudgil, B.

Myllylä, R.

M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. 38, 486–490 (2008).
[CrossRef]

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007).
[CrossRef]

Outters, V.

Paciaroni, M. E.

Petrova, S. A.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[CrossRef]

Priezzhev, A. V.

M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. 38, 486–490 (2008).
[CrossRef]

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007).
[CrossRef]

M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36(3), 247–252 (2006).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rakovic, M. J.

Rastegar, S.

Roblin, A.

Romanov, V. P.

V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. 248(2-5), 71–368 (1994).
[CrossRef]

Roze, C.

Sapozhnikova, V. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. 43(25), 5699–5707 (1995).
[CrossRef]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31(30), 6535–6546 (1992).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sedarsky, D. L.

Shakhova, N. M.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[CrossRef]

Shirmanova, M. V.

M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[CrossRef] [PubMed]

Sinichkin, Y. P.

D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001).
[CrossRef]

D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. 2(3), 200–208 (2000).
[CrossRef]

Sirotkina, M. A.

M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[CrossRef] [PubMed]

Stephen, M. J.

M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter 34(11), 7564–7572 (1986).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Wang, L. V.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

M. J. Raković, G. W. Kattawar, M. B. Mehrubeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38(15), 3399–3408 (1999).
[CrossRef]

Wang, X.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

Wolf, E.

Wolf, P. E.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988).
[CrossRef]

Yadlowsky, M. J.

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. 43(25), 5699–5707 (1995).
[CrossRef]

Yao, G.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

Zagainova, E. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[CrossRef]

Zagaynova, E. V.

M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[CrossRef] [PubMed]

Zakharov, P. V.

D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001).
[CrossRef]

Zimnyakov, D. A.

D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001).
[CrossRef]

D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. 2(3), 200–208 (2000).
[CrossRef]

Zubkov, L. A.

V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. 248(2-5), 71–368 (1994).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (1)

P. K. Milsom, “A ray-optic, Monte Carlo, description of a Gaussian beam waist – applied to reverse saturable absorption,” Appl. Phys. B 70(4), 593–599 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[CrossRef]

J. Biomed. Opt. (2)

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[CrossRef] [PubMed]

J. Europ. Opt. Soc. Rap. Public. (1)

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007).
[CrossRef]

J. Exp. Theor. Phys. (3)

V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. 105(2), 285–291 (2007).
[CrossRef]

V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. 110(5), 742–753 (2010).
[CrossRef]

V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. 96(5), 816–831 (2003).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. 2(3), 200–208 (2000).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. France (1)

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988).
[CrossRef]

Laser Phys. (1)

S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. 14, 886–891 (2004).

Laser Phys. Lett. (1)

E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. 3(9), 464–468 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (2)

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47(23), 4271–4285 (2002).
[CrossRef] [PubMed]

Phys. Rep. (1)

V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. 248(2-5), 71–368 (1994).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter 34(11), 7564–7572 (1986).
[CrossRef] [PubMed]

F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter 40(4), 2383–2406 (1989).
[CrossRef] [PubMed]

Proc. SPIE (1)

V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE 7573, 75730Z (2010).
[CrossRef]

Quantum Electron. (5)

D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36(11), 1009–1015 (2006).
[CrossRef]

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002).
[CrossRef]

I. V. Meglinski, “Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique,” Quantum Electron. 31, 1101–1107 (2001).

M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. 38, 486–490 (2008).
[CrossRef]

M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36(3), 247–252 (2006).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Waves Random Media (1)

D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001).
[CrossRef]

Other (8)

V.V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE Press, Bellingham, 2000).

B. E. Bouma, and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002).

V. V. Tuchin, Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics Environment and Material Science (Kluwer Academic, Boston, 2004).

I.M. Sobol’, The Monte Carlo Method (The University of Chicago Press, Chicago, 1974).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

C. Brosseau, Fundamentals of Polarized Light: a Statistical Optics Approach (New York: John Wiley & Sons, 1998).

C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (New York: Wiley, 1983)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental 2-D OCT images of human skin in vivo obtained for non-, co- and cross- polarized modes: (a), (b) and (c), respectively. Upper Stratum Corneum (1), lower Stratum Corneum (2), epidermis (3) and dermis (4) are clearly distinguished in the OCT images.

Fig. 2
Fig. 2

Layout of skin model used in the simulation

Fig. 3
Fig. 3

Simulated 2D OCT images of skin without account for “speckle effects” for various coherence lengths of low-coherent light source: 5 μm (a), 10 μm (b), 15 μm (c), 30 μm (d).

Fig. 4
Fig. 4

Simulated 2D OCT images of skin with account for “speckle effects” for various coherence lengths of low-coherent light source: 5 μm (a), 10 μm (b), 15 μm (c), 30 μm (d).

Fig. 5
Fig. 5

A-scan of OCT image of skin obtained for non-, co- and cross- polarized modes (a); 2D OCT images obtained for non-, co- and cross- polarized modes: (b), (c) and (d) respectively, coherence length of low-coherent light source is 15 μm.

Tables (1)

Tables Icon

Table 1 Optical properties of thick skin layers (λ = 910 nm)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

f ( s ) = μ s exp ( μ s s ) ,
ξ = S f ( s ) d s .
s = ln ξ μ s .
p ( n i n s ) = G ( n i n s ) 4 π G ( n i n s ) d Ω s ,
G ( n i n s ) = 1 ( 4 π ) 2 d r Δ ε ( 0 ) Δ ε ( r ) exp ( i k 0 ( n i n s ) r ) ,
  I ( z = ( I r I s ) 1 / 2 Re { C ( z , l c ) } .
  l c   = 2 ln 2 π λ 2 Δ λ ,
  I ( z = I 0 i = 1 N p h W i cos ( 2 π λ ( 2 z L i ) ) exp ( ( 2 z L i l c ) 2 ) ,
  I ( z = I 0 i = 1 N p h W i exp ( ( 2 z L i l c ) 2 ) .
P i = e i × [ e i × P i 1 ] = [ I ^ e i e i ] P i 1 ,
S i = ( 1 e i X 2 e i X e i Y e i X e i Z e i X e i Y 1 e i Y 2 e i Y e i Z e i X e i Z e i X e i Z 1 e i Z 2 ) .
P n = S n S n 1 ... S 1 P 0 .
k 0 4 G ( k i k s ) d Ω s = 1 s ,
k 0 4 G ( k i k s ) d Ω s = 2 1 + cos 2 θ ¯ 1 s .
Γ = 2 1 + cos 2 θ ¯
  I c o ( z = I 0 i = 1 N p h W i Γ n i T x x ( n i ) 2 exp ( ( 2 z L i l c ) 2 )
  I c r o s s ( z = I 0 i = 1 N p h W i Γ n i T y x ( n i ) 2 exp ( ( 2 z L i l c ) 2 )

Metrics