Abstract

The nonlinear response of silica - gold nanoshells (SGNs) in chloroform was studied using laser pulses of 65 fs at 1560 nm. The experiments were performed using the thermally managed Z - scan technique that allows measurements of the electronic contribution for the nonlinear response, free from thermal influence. The results were analyzed using an analytical approach based on the quasi - static approximation that allowed extraction of the nonlinear susceptibility of a SGN from the data. High third - order susceptibility, χsh (3) = - 1.5 x 10−11 m2/V2, approximately four orders of magnitude larger than for gold nanospheres in the visible, and large fifth - order susceptibility, χsh (5) = - 1.4 x 10−24 m4/V4, were obtained. The present results offers new perspectives for nonlinear plasmonics in the near - infrared.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
    [CrossRef]
  2. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
    [CrossRef] [PubMed]
  3. M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
    [CrossRef] [PubMed]
  4. D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
    [CrossRef] [PubMed]
  5. J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
    [CrossRef]
  6. J. T. Seo, Q. Yang, W. J. Kim, J. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett. 34(3), 307–309 (2009).
    [CrossRef] [PubMed]
  7. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [CrossRef] [PubMed]
  8. T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
    [CrossRef]
  9. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [CrossRef]
  10. C. A. R. Costa, C. A. P. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107(20), 4747–4755 (2003).
    [CrossRef]
  11. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
    [CrossRef]
  12. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
    [CrossRef]
  13. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13(20), 7976–7981 (2005).
    [CrossRef] [PubMed]
  14. L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
    [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  16. E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007).
    [CrossRef]
  17. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
    [CrossRef]
  18. See for example: J. D. Jackson, “Classical electrodynamics” (Wiley, New York, 1998).
  19. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6(4), 787–796 (1989).
    [CrossRef]
  20. Corning product information data sheet for standard silica ( http://www.corning.com/docs/specialtymaterials/pisheets/H0607_hpfs_Standard_ProductSheet.pdf ).
  21. A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
    [CrossRef]
  22. R. W. Boyd, “Nonlinear optics” (Academic, San Diego, 2003).
  23. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, “Origin of third-order optical nonlinearity in Au:SiO(2) composite films on femtosecond and picosecond time scales,” Opt. Lett. 23(5), 388–390 (1998).
    [CrossRef]
  24. N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
    [CrossRef]
  25. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986).
    [CrossRef]
  26. B. B. Baizakov, A. Bouketir, A. Messikh, and B. A. Umarov, “Modulational instability in two-component discrete media with cubic-quintic nonlinearity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046605 (2009).
    [CrossRef] [PubMed]
  27. M. Lewenstein and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” N. J. Phys. 11, 113014 (2009).
    [CrossRef]
  28. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010).
    [CrossRef]
  29. G. I. Stegeman, in “Nonlinear optics of organic molecules and polymers,” p.799, edited by H. S. Nalva and S. Miyata (CRC, Boca Raton, Fl., 1997).
  30. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett. 35(10), 1560–1562 (2010).
    [CrossRef] [PubMed]

2010

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010).
[CrossRef]

K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett. 35(10), 1560–1562 (2010).
[CrossRef] [PubMed]

2009

B. B. Baizakov, A. Bouketir, A. Messikh, and B. A. Umarov, “Modulational instability in two-component discrete media with cubic-quintic nonlinearity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046605 (2009).
[CrossRef] [PubMed]

M. Lewenstein and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” N. J. Phys. 11, 113014 (2009).
[CrossRef]

J. T. Seo, Q. Yang, W. J. Kim, J. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett. 34(3), 307–309 (2009).
[CrossRef] [PubMed]

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
[CrossRef]

2008

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[CrossRef]

2007

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007).
[CrossRef]

2005

A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13(20), 7976–7981 (2005).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

2003

C. A. R. Costa, C. A. P. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107(20), 4747–4755 (2003).
[CrossRef]

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[CrossRef]

2002

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

1999

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[CrossRef]

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[CrossRef]

1998

1992

1990

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

1989

1986

1982

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[CrossRef]

1971

N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
[CrossRef]

1968

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Akin, D.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Atwater, H. A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[CrossRef]

Austin, J.

Averitt, R. D.

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[CrossRef]

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[CrossRef]

Badve, S.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Baizakov, B. B.

B. B. Baizakov, A. Bouketir, A. Messikh, and B. A. Umarov, “Modulational instability in two-component discrete media with cubic-quintic nonlinearity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046605 (2009).
[CrossRef] [PubMed]

Bardhan, R.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Barhoumi, A.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

Bashir, R.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Birnboim, M. H.

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Bouketir, A.

B. B. Baizakov, A. Bouketir, A. Messikh, and B. A. Umarov, “Modulational instability in two-component discrete media with cubic-quintic nonlinearity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046605 (2009).
[CrossRef] [PubMed]

Choi, M.-R.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Christensen, N. E.

N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
[CrossRef]

Clare, S. E.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Costa, C. A. R.

C. A. R. Costa, C. A. P. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107(20), 4747–4755 (2003).
[CrossRef]

de Araújo, C. B.

L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007).
[CrossRef]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Falcão-Filho, E. L.

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Flytzanis, C.

Fu, J. S.

Fu, M.

Galembeck, F.

C. A. R. Costa, C. A. P. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107(20), 4747–4755 (2003).
[CrossRef]

Gnoli, A.

Gómez, L. A.

L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
[CrossRef]

Hache, F.

Hagan, D. J.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Halas, N. J.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[CrossRef]

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[CrossRef]

Han, S. W.

Hartgerink, J. D.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

Heo, J.

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Jackson, J. B.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

Jung, S. S.

Kim, J.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Kim, W. J.

Leblond, H.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010).
[CrossRef]

Ledemi, Y.

L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
[CrossRef]

Lederer, F.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010).
[CrossRef]

Lee, L. P.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[CrossRef]

Lee, T. R.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

Leite, C. A. P.

C. A. R. Costa, C. A. P. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107(20), 4747–4755 (2003).
[CrossRef]

Levin, C. S.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Lewenstein, M.

M. Lewenstein and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” N. J. Phys. 11, 113014 (2009).
[CrossRef]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Liao, H. B.

Liu, G. L.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Long, H.

Lu, P.

Lu, Y.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Ma, S. M.

Malomed, B. A.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010).
[CrossRef]

M. Lewenstein and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” N. J. Phys. 11, 113014 (2009).
[CrossRef]

Mazilu, D.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010).
[CrossRef]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[CrossRef]

Mejia, Y. X.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Messaddeq, S. H.

L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
[CrossRef]

Messaddeq, Y.

L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
[CrossRef]

Messikh, A.

B. B. Baizakov, A. Bouketir, A. Messikh, and B. A. Umarov, “Modulational instability in two-component discrete media with cubic-quintic nonlinearity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046605 (2009).
[CrossRef] [PubMed]

Mihalache, D.

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010).
[CrossRef]

Moroz, A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[CrossRef]

Neeves, A. E.

Neumann, O.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[CrossRef]

Penninkhof, J. J.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[CrossRef]

Perham, M.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

Pham, T.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

Polman, A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[CrossRef]

Putvinskis, R.

L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
[CrossRef]

Razzari, L.

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Ricard, D.

Righini, M.

Robinson, J. P.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Rodrigues, J. J.

Said, A. A.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[CrossRef]

Seo, J. T.

Seraphin, B. O.

N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
[CrossRef]

Sheik-Bahae, M.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Stanley, J. K.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Stanton-Maxey, K. J.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Sturgis, J.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[CrossRef]

Tabibi, B.

Temple, D.

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Umarov, B. A.

B. B. Baizakov, A. Bouketir, A. Messikh, and B. A. Umarov, “Modulational instability in two-component discrete media with cubic-quintic nonlinearity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046605 (2009).
[CrossRef] [PubMed]

van Blaaderen, A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[CrossRef]

Van Stryland, E. W.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wang, H.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, “Origin of third-order optical nonlinearity in Au:SiO(2) composite films on femtosecond and picosecond time scales,” Opt. Lett. 23(5), 388–390 (1998).
[CrossRef]

Wang, J.

Wang, K.

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Wei, T. H.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Westcott, S. L.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[CrossRef]

Wittung-Stafshede, P.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

Wong, G. K. L.

Wong, K. S.

Wu, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Xiao, R. F.

Yang, G.

Yang, Q.

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Young, J.

Yun, W. S.

Yuwono, V. M.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

Zhang, D.

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Appl. Phys. B

L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

J. Appl. Phys.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[CrossRef]

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[CrossRef]

J. Chem. Phys.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999).
[CrossRef]

J. Colloid Interface Sci.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[CrossRef]

J. Phys. Chem. B

C. A. R. Costa, C. A. P. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107(20), 4747–4755 (2003).
[CrossRef]

Langmuir

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

N. J. Phys.

M. Lewenstein and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” N. J. Phys. 11, 113014 (2009).
[CrossRef]

Nano Lett.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein).
[CrossRef] [PubMed]

D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009).
[CrossRef] [PubMed]

Nature

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010).
[CrossRef]

Phys. Rev. B

N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

B. B. Baizakov, A. Bouketir, A. Messikh, and B. A. Umarov, “Modulational instability in two-component discrete media with cubic-quintic nonlinearity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046605 (2009).
[CrossRef] [PubMed]

Other

Corning product information data sheet for standard silica ( http://www.corning.com/docs/specialtymaterials/pisheets/H0607_hpfs_Standard_ProductSheet.pdf ).

R. W. Boyd, “Nonlinear optics” (Academic, San Diego, 2003).

G. I. Stegeman, in “Nonlinear optics of organic molecules and polymers,” p.799, edited by H. S. Nalva and S. Miyata (CRC, Boca Raton, Fl., 1997).

See for example: J. D. Jackson, “Classical electrodynamics” (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electron microscope images of the nanoparticles. (a) Silica core (average diameter: ~120 nm). (b) Silica - APTMS - gold nanoparticles (average diameter: ~160 nm). (c) and (d) Silica - gold nanoshells (average diameter: ~160 nm). Figures 1(a) to 1(c) were obtained using a 100 kV transmission electron microscope. Figure 1(d) was obtained using a 200 kV scanning electron microscope.

Fig. 2
Fig. 2

Absorption coefficient of CHCl3 in a 10 mm cuvette (red line) and extinction coefficient of SGNs - CHCl3 colloid (blue line) using CHCl3 as blank. The SGNs filling fraction is 3×10−5.

Fig. 3
Fig. 3

Thermally Managed Z-scan results. Figures 3(a) and 3(b) show Z-scan profiles obtained at t = 0.10, 0.40, 0.65, 0.95 ms; for pure chloroform and for the colloid, respectively. Figures 3(c) and 3(d) show the time evolution of the transmittance signal with the sample at positions corresponding to the minimum and maximum transmittance for pure chloroform and for the SGNs - CHCl3 colloid, respectively. The data were obtained using a 1 mm thick cuvette and intensities at the focus of 1.2 and 1.0 GW/cm2 for pure chloroform and SGNs - CHCl3 colloid, respectively.

Fig. 4
Fig. 4

Intensity dependence of | ΔTPV | / I as a function of I for t = 0.95 ms (black circles) and for t = 0 ms (blue squares). Red lines represent numerical fits to the data.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| Δ T P V | I k 0 [ 0.396 n 2 L e f f ( 1 ) + 0.198 n 4 L e f f ( 2 ) I ] ,
P = P h + 1 V i = 1 N P p i ,
p i = ( ε h α i ) E 0 ,
α i = 3 υ i { ε s h [ ε c ( 3 2 R ) + 2 ε s h R ] ε h [ ε c R + ε s h ( 3 R ) ] ε s h [ ε c ( 3 2 R ) + 2 ε s h R ] + 2 ε h [ ε c R + ε s h ( 3 R ) } ,
ε s h ( N L ) = 3 4 χ s h ( 3 ) | E s h | 2 + 5 8 χ s h ( 5 ) | E s h | 2 2 ,
β = c ε s h + 2 d ε h 3 a ε h ,
g ( r c , r s h ) = 1 + r c 3 4 ( r s h r r c ) ( 1 r c 2 1 r s h 2 ) ( a b + a b ) | a | 2 + r c 6 2 ( r s h r r c ) ( 1 r c 5 1 r s h 5 ) | b | 2 | a | 2 ,
χ e f f ( 3 ) = χ h ( 3 ) + f R g ( r c , r s h ) | β | 2 β 2 c ε c + 2 d ε s h a 2 χ s h ( 3 ) ,
χ e f f ( 5 ) = f R [ g ( r c , r s h ) ] 2 | β | 4 β 2 { ( c ε c + 2 d ε s h a 2 ) χ s h ( 5 )             3 10 [ c ( c ε c + 2 d ε s h ) + 18 ε c ( R 1 ) ( ε s h 2 + 2 ε c ε h ) a 2 ( c ε s h + 2 d ε h ) ] [ χ s h ( 3 ) ] 2 } ,

Metrics