Abstract

A forward-view optical coherence tomography (OCT) scanning catheter has been developed based on a fiber-cantilever piezotube scanner by using a semi-resonant scan strategy for a better scan performance. A compact endoscope catheter was fabricated by using a tubular piezoelectric actuator with quartered electrodes in combination with a resonant fiber cantilever. A cantilever weight was attached to the fiber cantilever to reduce the resonance frequency down to 63 Hz, well in the desirable range for Fourier-domain OCT. The resonant-cantilever scanner was driven at semi-resonance frequencies that were well out of the resonance peak but within a range of partial resonance. This driving strategy has been found to minimize the phase difference between the two scan axes for a better scan stability against environmental perturbations as well as for a driving simplicity. By driving the two axes at slightly different frequencies, a low-order Lissajous pattern has been obtained for a 2D area scan. 3D OCT images have been successfully acquired in an acquisition time of 1.56 seconds for a tomogram volume of 2.2 × 2.2 × 2.1 mm3. They were reconstructed without any scan calibration by extracting the scan timing from the image data. In addition, it has been found that the Lissajous scan strategy provides a means to compensate the relative axial motion of a sample for a correct imaged morphology.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
    [CrossRef]
  2. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29(11), 1236–1238 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-11-1236 .
    [CrossRef] [PubMed]
  3. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-24-1966 .
    [CrossRef]
  4. T. Xie, H. Xie, G. K. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers,” Appl. Opt. 42(31), 6422–6426 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ao-42-31-6422 .
    [CrossRef] [PubMed]
  5. A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express 15(5), 2445–2453 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2445 .
    [CrossRef] [PubMed]
  6. W. Jung, D. T. McCormick, Y.-C. Ahn, A. Sepehr, M. Brenner, B. Wong, N. C. Tien, and Z. Chen, “In vivo three-dimensional spectral domain endoscopic optical coherence tomography using a microelectromechanical system mirror,” Opt. Lett. 32(22), 3239–3241 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-22-3239 .
    [CrossRef] [PubMed]
  7. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-21-1618 .
    [CrossRef]
  8. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-15-1763 .
    [CrossRef] [PubMed]
  9. Y. Wang, M. Bachman, G.-P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-1-53 .
    [CrossRef] [PubMed]
  10. E. J. Min, J. Na, S. Y. Ryu, and B. H. Lee, “Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging,” Opt. Lett. 34(12), 1897–1899 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-12-1897 .
    [CrossRef] [PubMed]
  11. T. Wu, Z. Ding, K. Wang, M. Chen, and C. Wang, “Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography,” Opt. Express 17(16), 13819–13829 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13819 .
    [CrossRef] [PubMed]
  12. Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber scanner for tracking control: theory and experiment,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
    [CrossRef]
  13. Q. Y. J. Smithwick, J. Vagners, P. G. Reinhall, and E. J. Seibel, “An error space controller for a resonating fiber scanner: simulation and implementation,” J. Dyn. Syst. Meas. Control 128(4), 899–913 (2006).
    [CrossRef]
  14. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
    [CrossRef] [PubMed]
  15. L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express 18(14), 14375–14384 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14375 .
    [CrossRef] [PubMed]
  16. C. W. de Silva, Vibration: Fundametals and Practice, 2nd Ed. (CRC Press, 2007).

2010 (2)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express 18(14), 14375–14384 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14375 .
[CrossRef] [PubMed]

2009 (2)

2007 (2)

2006 (2)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef]

Q. Y. J. Smithwick, J. Vagners, P. G. Reinhall, and E. J. Seibel, “An error space controller for a resonating fiber scanner: simulation and implementation,” J. Dyn. Syst. Meas. Control 128(4), 899–913 (2006).
[CrossRef]

2005 (1)

2004 (3)

2003 (1)

2001 (1)

1997 (1)

Aguirre, A. D.

Ahn, Y.-C.

Bachman, M.

Boppart, S. A.

Bouma, B. E.

Brenner, M.

Brezinski, M. E.

Chen, M.

Chen, Y.

Chen, Z.

Cobb, M. J.

Ding, Z.

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Fan, L.

Fedder, G. K.

Fujimoto, J. G.

Guo, S.

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef]

Hertz, P. R.

Huo, L.

Jung, W.

Kimmey, M. B.

Lee, B. H.

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Li, G.-P.

Li, X.

Liu, X.

McCormick, D. T.

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef]

Min, E. J.

Mukai, D. S.

Na, J.

Pan, Y.

Pitris, C.

Piyawattanametha, W.

Reinhall, P. G.

Q. Y. J. Smithwick, J. Vagners, P. G. Reinhall, and E. J. Seibel, “An error space controller for a resonating fiber scanner: simulation and implementation,” J. Dyn. Syst. Meas. Control 128(4), 899–913 (2006).
[CrossRef]

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber scanner for tracking control: theory and experiment,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[CrossRef]

Ryu, S. Y.

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Q. Y. J. Smithwick, J. Vagners, P. G. Reinhall, and E. J. Seibel, “An error space controller for a resonating fiber scanner: simulation and implementation,” J. Dyn. Syst. Meas. Control 128(4), 899–913 (2006).
[CrossRef]

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber scanner for tracking control: theory and experiment,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[CrossRef]

Sepehr, A.

Smithwick, Q. Y. J.

Q. Y. J. Smithwick, J. Vagners, P. G. Reinhall, and E. J. Seibel, “An error space controller for a resonating fiber scanner: simulation and implementation,” J. Dyn. Syst. Meas. Control 128(4), 899–913 (2006).
[CrossRef]

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber scanner for tracking control: theory and experiment,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[CrossRef]

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

Tien, N. C.

Tran, P. H.

Vagners, J.

Q. Y. J. Smithwick, J. Vagners, P. G. Reinhall, and E. J. Seibel, “An error space controller for a resonating fiber scanner: simulation and implementation,” J. Dyn. Syst. Meas. Control 128(4), 899–913 (2006).
[CrossRef]

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber scanner for tracking control: theory and experiment,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[CrossRef]

Wang, C.

Wang, K.

Wang, Y.

Wong, B.

Wong, B. J. F.

Wu, J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef]

Wu, M. C.

Wu, T.

Wu, Y.

Xi, J.

Xie, H.

Xie, T.

Yang, C.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef]

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef]

Appl. Opt. (1)

J Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef]

J. Dyn. Syst. Meas. Control (2)

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber scanner for tracking control: theory and experiment,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[CrossRef]

Q. Y. J. Smithwick, J. Vagners, P. G. Reinhall, and E. J. Seibel, “An error space controller for a resonating fiber scanner: simulation and implementation,” J. Dyn. Syst. Meas. Control 128(4), 899–913 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

W. Jung, D. T. McCormick, Y.-C. Ahn, A. Sepehr, M. Brenner, B. Wong, N. C. Tien, and Z. Chen, “In vivo three-dimensional spectral domain endoscopic optical coherence tomography using a microelectromechanical system mirror,” Opt. Lett. 32(22), 3239–3241 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-22-3239 .
[CrossRef] [PubMed]

E. J. Min, J. Na, S. Y. Ryu, and B. H. Lee, “Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging,” Opt. Lett. 34(12), 1897–1899 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-12-1897 .
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-21-1618 .
[CrossRef]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-24-1966 .
[CrossRef]

P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29(11), 1236–1238 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-11-1236 .
[CrossRef] [PubMed]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-15-1763 .
[CrossRef] [PubMed]

Y. Wang, M. Bachman, G.-P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-1-53 .
[CrossRef] [PubMed]

Other (1)

C. W. de Silva, Vibration: Fundametals and Practice, 2nd Ed. (CRC Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic design and picture of the fabricated OCT scanning catheter. The dimensions are given in millimeters.

Fig. 2
Fig. 2

Measured resonance transfer function of the fabricated fiber cantilever mounted on a piezotube actuator for the two driving axes (X and Y) in the vicinity of their lowest resonance peaks. Solid lines are obtained by spline interpolation.

Fig. 3
Fig. 3

Captured scan patterns of the fabricated fiber cantilever at various driving frequencies when X and Y axes were driven by electric driving signals of the same amplitude and phase. The dotted orange lines are added for comparison.

Fig. 4
Fig. 4

Imaged scan patterns when the catheter body is freely laid (upper row) and pressed in a direction (lower row) for the case of driving it at a full-resonance frequency of 63.3 Hz (two columns in the left) and at an off-resonance frequency of 62.7 Hz (column in the right), respectively. Dotted orange ellipses and a dotted line were added for comparing the two in each column.

Fig. 5
Fig. 5

Raw OCT image (a) and the re-sampled image (b) of a human finger tip, given in a white-background display mode. The darkness of a pixel corresponds to the reflectivity scaled in dB.

Fig. 6
Fig. 6

Schematic Lissajous scan pattern (blue lines) in the XY plane laid over an OCT en face image: the first quarter cycle (left) and the second quarter cycle (right).

Fig. 7
Fig. 7

Raw 2D OCT image of the primary B-scan (a) and that of a B-scan ellipse when it was almost circular (b). The sample is a human finger tip.

Fig. 8
Fig. 8

Reconstructed OCT en face images [(a) to (f)], and the 3D-rendered tomograms with different view angles [(g) and (h)]. A rendered 3D tomogram of an IR detection card with a straightly cut edge (i) is shown together.

Fig. 9
Fig. 9

OCT en face image before cutting the corner areas out (a) and the scan circle area laid over the same image (b). The blue dotted circle depicts the circular scan area (1) and two corner areas [(2) and (3)].

Fig. 10
Fig. 10

Sampling point density in color map (a) and its cut view along a horizontal line that passes the center.

Fig. 11
Fig. 11

OCT image cut along the X’ axis (a), Y’-cut image (b), and the en face image (c) before the motion compensation, along with the motion-corrected versions of the Y’-cut image (b’), en face image (c’) and the 3D-rendered tomogram (d). The sample was a pig’s larynx ex vivo. Images show the trachea.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x ( t ) = A x ( f ) sin ( 2 π f t + φ x )

Metrics