Abstract

We have studied optical trapping and propulsion of red blood cells in the evanescent field of optical waveguides. Cell propulsion is found to be highly dependent on the biological medium and serum proteins the cells are submerged in. Waveguides made of tantalum pentoxide are shown to be efficient for cell propulsion. An optical propulsion velocity of up to 6 µm/s on a waveguide with a width of ~6 µm is reported. Stable optical trapping and propulsion of cells during transverse flow is also reported.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  4. P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro-spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc 38(9), 1082–1088 (2007).
    [CrossRef]
  5. K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
    [CrossRef] [PubMed]
  6. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
    [CrossRef] [PubMed]
  7. R. Applegate, J. Squier, T. Vestad, J. Oakey, and D. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
    [CrossRef] [PubMed]
  8. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [CrossRef] [PubMed]
  9. K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4-6), 227–235 (2004).
    [CrossRef]
  10. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  11. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [CrossRef] [PubMed]
  12. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [CrossRef] [PubMed]
  13. D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
    [CrossRef]
  14. B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
    [CrossRef]
  15. B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
    [CrossRef]
  16. H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
    [CrossRef]
  17. H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
    [CrossRef]
  18. S. Gaugiran, S. Gétin, J. M. Fedeli, and J. Derouard, “Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces,” Opt. Express 15(13), 8146–8156 (2007).
    [CrossRef] [PubMed]
  19. D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
    [CrossRef]
  20. G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 471–476 (1999).
    [CrossRef] [PubMed]
  21. J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: the nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77(1), 51–59 (1971).
    [CrossRef] [PubMed]
  22. G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell Sci. 87(Pt 4), 519–523 (1987).
    [PubMed]
  23. E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
    [CrossRef] [PubMed]
  24. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
    [CrossRef] [PubMed]
  25. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
    [CrossRef]
  26. A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
    [CrossRef] [PubMed]
  27. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7(13), 533–539 (2000).
    [CrossRef] [PubMed]
  28. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  29. M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 1), 031108 (2004).
    [CrossRef] [PubMed]
  30. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
    [CrossRef] [PubMed]
  31. K. Grujic and O. G. Hellesø, “Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide,” Opt. Express 15(10), 6470–6477 (2007).
    [CrossRef] [PubMed]
  32. S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
    [CrossRef]
  33. B. Hansen, J. Melkko, and B. Smedsrød, “Serum is a rich source of ligands for the scavenger receptor of hepatic sinusoidal endothelial cells,” Mol. Cell. Biochem. 229(1-2), 63–72 (2002).
    [CrossRef] [PubMed]
  34. K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
    [CrossRef] [PubMed]

2010 (1)

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[CrossRef]

2009 (5)

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

2007 (4)

2006 (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[CrossRef] [PubMed]

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

2005 (5)

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[CrossRef]

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
[CrossRef]

K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
[CrossRef] [PubMed]

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[CrossRef] [PubMed]

2004 (4)

R. Applegate, J. Squier, T. Vestad, J. Oakey, and D. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[CrossRef] [PubMed]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 1), 031108 (2004).
[CrossRef] [PubMed]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4-6), 227–235 (2004).
[CrossRef]

2003 (2)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (1)

B. Hansen, J. Melkko, and B. Smedsrød, “Serum is a rich source of ligands for the scavenger receptor of hepatic sinusoidal endothelial cells,” Mol. Cell. Biochem. 229(1-2), 63–72 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[CrossRef] [PubMed]

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 471–476 (1999).
[CrossRef] [PubMed]

1997 (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

1996 (1)

1987 (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

1972 (1)

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
[CrossRef] [PubMed]

1971 (1)

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: the nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77(1), 51–59 (1971).
[CrossRef] [PubMed]

Ahluwalia, B. S.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[CrossRef]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Applegate, R.

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Bálint, Š.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

Chatelain, F.

Chen, J.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[CrossRef]

Chen, X.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[CrossRef]

Colas, G.

Cossins, B.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

Dao, M.

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[CrossRef]

Derouard, J.

Dérouard, J.

Dharmadhikari, A. K.

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Dharmadhikari, J. A.

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Dholakia, K.

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro-spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc 38(9), 1082–1088 (2007).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

El-Ali, J.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[CrossRef] [PubMed]

Enger, J.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Evans, E.

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
[CrossRef] [PubMed]

Fedeli, J. M.

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

S. Gaugiran, S. Gétin, J. M. Fedeli, and J. Derouard, “Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces,” Opt. Express 15(13), 8146–8156 (2007).
[CrossRef] [PubMed]

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[CrossRef] [PubMed]

Feder, J.

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 471–476 (1999).
[CrossRef] [PubMed]

Ferret, P.

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Fisher, L. R.

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Francis, G. W.

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Fuchs, A.

Fung, Y. C.

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
[CrossRef] [PubMed]

Gallet, F.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[CrossRef] [PubMed]

Gamble, R. A.

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Garcés-Chávez, V.

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro-spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc 38(9), 1082–1088 (2007).
[CrossRef]

Gaugiran, S.

Gauthier, R. C.

George, J. N.

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: the nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77(1), 51–59 (1971).
[CrossRef] [PubMed]

Gétin, S.

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

S. Gaugiran, S. Gétin, J. M. Fedeli, and J. Derouard, “Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces,” Opt. Express 15(13), 8146–8156 (2007).
[CrossRef] [PubMed]

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[CrossRef] [PubMed]

Ghosh, A.

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Giaever, I.

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 471–476 (1999).
[CrossRef] [PubMed]

Gingell, D.

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Goksör, M.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Grier, D. G.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef] [PubMed]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 1), 031108 (2004).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Grover, S. C.

Grujic, K.

K. Grujic and O. G. Hellesø, “Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide,” Opt. Express 15(10), 6470–6477 (2007).
[CrossRef] [PubMed]

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[CrossRef]

K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4-6), 227–235 (2004).
[CrossRef]

Guallar, V.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

Hansen, B.

B. Hansen, J. Melkko, and B. Smedsrød, “Serum is a rich source of ligands for the scavenger receptor of hepatic sinusoidal endothelial cells,” Mol. Cell. Biochem. 229(1-2), 63–72 (2002).
[CrossRef] [PubMed]

Hanstorp, D.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Hellesø, O.

Hellesø, O. G.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[CrossRef]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

K. Grujic and O. G. Hellesø, “Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide,” Opt. Express 15(10), 6470–6477 (2007).
[CrossRef] [PubMed]

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
[CrossRef]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4-6), 227–235 (2004).
[CrossRef]

Hénon, S.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[CrossRef] [PubMed]

Herrington, C. S.

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro-spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc 38(9), 1082–1088 (2007).
[CrossRef]

Hole, J.

Hole, J. P.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4-6), 227–235 (2004).
[CrossRef]

Jaising, H.

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[CrossRef]

Jaising, H. Y.

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
[CrossRef]

Jensen, K. F.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[CrossRef] [PubMed]

Jess, P. R. T.

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro-spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc 38(9), 1082–1088 (2007).
[CrossRef]

Käll, M.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef] [PubMed]

Kawata, S.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Ladavac, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef] [PubMed]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 1), 031108 (2004).
[CrossRef] [PubMed]

Lenormand, G.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[CrossRef] [PubMed]

Lim, C. T.

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[CrossRef]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Logg, K.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Marr, D.

Mathur, D.

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Melkko, J.

B. Hansen, J. Melkko, and B. Smedsrød, “Serum is a rich source of ligands for the scavenger receptor of hepatic sinusoidal endothelial cells,” Mol. Cell. Biochem. 229(1-2), 63–72 (2002).
[CrossRef] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Néel, D.

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Oakey, J.

Pelton, M.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 1), 031108 (2004).
[CrossRef] [PubMed]

Perney, N. M. B.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Petrov, D.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

Pettersen, E. O.

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 471–476 (1999).
[CrossRef] [PubMed]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Ramser, K.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Rao, S.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

Reed, C. F.

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: the nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77(1), 51–59 (1971).
[CrossRef] [PubMed]

Richert, A.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[CrossRef] [PubMed]

Riches, A. C.

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro-spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc 38(9), 1082–1088 (2007).
[CrossRef]

Rosina, M.

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Roy, S.

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Sagvolden, G.

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 471–476 (1999).
[CrossRef] [PubMed]

Samuel, J.

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Sessions, N. P.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Sharma, S.

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Sinha, S.

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Skirtach, A. G.

Smedsrød, B.

B. Hansen, J. Melkko, and B. Smedsrød, “Serum is a rich source of ligands for the scavenger receptor of hepatic sinusoidal endothelial cells,” Mol. Cell. Biochem. 229(1-2), 63–72 (2002).
[CrossRef] [PubMed]

Sorger, P. K.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[CrossRef] [PubMed]

Squier, J.

Subramanian, A. Z.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[CrossRef]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Suresh, S.

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[CrossRef]

Tani, T.

Tomita, O. G. H.

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[CrossRef]

Vestad, T.

Weed, R. I.

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: the nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77(1), 51–59 (1971).
[CrossRef] [PubMed]

Wilkinson, J.

Wilkinson, J. S.

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[CrossRef]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4-6), 227–235 (2004).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Biophys. J. (2)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[CrossRef] [PubMed]

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

J. Cell Sci. (1)

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

J. Cell. Physiol. (1)

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: the nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77(1), 51–59 (1971).
[CrossRef] [PubMed]

J. Mech. Phys. Solids (1)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[CrossRef]

J. Raman Spectrosc (1)

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro-spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc 38(9), 1082–1088 (2007).
[CrossRef]

Lab Chip (1)

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Microvasc. Res. (1)

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
[CrossRef] [PubMed]

Mol. Cell. Biochem. (1)

B. Hansen, J. Melkko, and B. Smedsrød, “Serum is a rich source of ligands for the scavenger receptor of hepatic sinusoidal endothelial cells,” Mol. Cell. Biochem. 229(1-2), 63–72 (2002).
[CrossRef] [PubMed]

Nature (5)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Opt. Commun. (2)

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4-6), 227–235 (2004).
[CrossRef]

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
[CrossRef]

Opt. Express (7)

S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7(13), 533–539 (2000).
[CrossRef] [PubMed]

R. Applegate, J. Squier, T. Vestad, J. Oakey, and D. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[CrossRef] [PubMed]

K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
[CrossRef] [PubMed]

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[CrossRef] [PubMed]

K. Grujic and O. G. Hellesø, “Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide,” Opt. Express 15(10), 6470–6477 (2007).
[CrossRef] [PubMed]

S. Gaugiran, S. Gétin, J. M. Fedeli, and J. Derouard, “Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces,” Opt. Express 15(13), 8146–8156 (2007).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Rev. (1)

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[CrossRef]

Phys. Biol. (1)

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 1), 031108 (2004).
[CrossRef] [PubMed]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 471–476 (1999).
[CrossRef] [PubMed]

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

Proc. SPIE (1)

B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (3366 KB)     
» Media 2: MOV (3684 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental set-up for optical propulsion of cells on waveguides.

Fig. 2
Fig. 2

Comparison of cell propulsion velocity on a Cs+ ion exchange and a Ta2O5 waveguide. Input power is 800 mW and width of waveguides ~10 µm.

Fig. 3
Fig. 3

Comparison of optical propulsion velocity of a cell in water and isotonic sucrose media as a function of input power. Ta2O5 waveguide of width ~10 µm was used.

Fig. 4
Fig. 4

Optical propulsion velocities of live RBCs as a function of input power and the width of waveguides.

Fig. 5
Fig. 5

(Media 1) Optical propulsion of live RBCs on a 6µm wide Ta2O5 waveguide.

Fig. 6
Fig. 6

(Media 2) Optical trapping and propulsion of RBC in the presence of transverse flow.

Tables (2)

Tables Icon

Table 1 Insertion loss on 2.5 cm long Ta2O5 waveguide

Tables Icon

Table 2 Optical propulsion of RBC in different media and sera

Metrics