Abstract

In this study we present for the first time the use of confocal microscopy and laser scanning brightfield microscopy (LSBF) for real time imaging of femtosecond laser nanosurgery and its dynamics in C. elegans. A single multimodal optical workstation that provides the ability to perform femtosecond laser nanosurgery and simultaneous confocal and LSBF imaging was used for the purpose. With this tool several dynamic phenomena concomitant with laser nanosurgery in C. elegans were observed and imaged. Some of these dynamic phenomena, like muscular contraction and single muscle cell stimulation, have been imaged for the first time during nano-neurosurgery of C. elegans.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
    [PubMed]
  2. H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, “Multiphoton Stimulation of Neurons Multiphoton stimulation of neurons,” Neurobiol. 51(3), 237–247 (2002).
    [CrossRef]
  3. R. L. Amy and R. Storb, “Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study,” Science 150(3697), 756–758 (1965).
    [CrossRef] [PubMed]
  4. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
    [CrossRef] [PubMed]
  5. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5279 .
    [CrossRef] [PubMed]
  6. S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4708 .
    [CrossRef] [PubMed]
  7. Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
    [CrossRef] [PubMed]
  8. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
    [CrossRef] [PubMed]
  9. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  10. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  11. J. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-3-9-315 .
    [CrossRef] [PubMed]
  12. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-5-8-169 .
    [CrossRef] [PubMed]
  13. E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
    [CrossRef] [PubMed]
  14. E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
    [PubMed]
  15. S. H. Chung and E. Mazur, “Femtosecond laser ablation of neurons in C. elegans for behavioral studies,” Appl. Phys., A Mater. Sci. Process. 96(2), 335–341 (2009).
    [CrossRef]
  16. M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
    [CrossRef]
  17. F. Zeng, C. B. Rohde, and M. F. Yanik, “Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation,” Lab Chip 8(5), 653–656 (2008).
    [CrossRef] [PubMed]
  18. M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
    [CrossRef] [PubMed]
  19. http://www.nikoninstruments.com/Products/Microscope-Systems/Inverted- Microscopes/Biological/Eclipse-Ti .
  20. S. Brenner, “The genetics of Caenorhabditis elegans,” Genetics 77(1), 71–94 (1974).
    [PubMed]
  21. F. Bourgeois and A. Ben-Yakar, “Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans,” Opt. Express 16(8), 5963–15963 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5963 .
    [CrossRef] [PubMed]
  22. A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  23. N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, “A femtosecond laser pacemaker for heart muscle cells,” Opt. Express 16(12), 8604–8616 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8604 .
    [CrossRef] [PubMed]
  24. M. C. Hogan, C. M. Stary, R. S. Balaban, and C. A. Combs, “NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability,” Appl. Physiol 98(4), 1420–1426 (2005).
    [CrossRef]

2009 (3)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

S. H. Chung and E. Mazur, “Femtosecond laser ablation of neurons in C. elegans for behavioral studies,” Appl. Phys., A Mater. Sci. Process. 96(2), 335–341 (2009).
[CrossRef]

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[CrossRef] [PubMed]

2008 (5)

E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
[CrossRef] [PubMed]

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

F. Bourgeois and A. Ben-Yakar, “Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans,” Opt. Express 16(8), 5963–15963 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5963 .
[CrossRef] [PubMed]

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, “A femtosecond laser pacemaker for heart muscle cells,” Opt. Express 16(12), 8604–8616 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8604 .
[CrossRef] [PubMed]

F. Zeng, C. B. Rohde, and M. F. Yanik, “Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation,” Lab Chip 8(5), 653–656 (2008).
[CrossRef] [PubMed]

2007 (1)

Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
[CrossRef] [PubMed]

2006 (2)

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5279 .
[CrossRef] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
[CrossRef]

2005 (4)

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4708 .
[CrossRef] [PubMed]

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
[PubMed]

M. C. Hogan, C. M. Stary, R. S. Balaban, and C. A. Combs, “NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability,” Appl. Physiol 98(4), 1420–1426 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

2004 (1)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

2003 (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, “Multiphoton Stimulation of Neurons Multiphoton stimulation of neurons,” Neurobiol. 51(3), 237–247 (2002).
[CrossRef]

1999 (1)

1998 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1974 (1)

S. Brenner, “The genetics of Caenorhabditis elegans,” Genetics 77(1), 71–94 (1974).
[PubMed]

1965 (1)

R. L. Amy and R. Storb, “Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study,” Science 150(3697), 756–758 (1965).
[CrossRef] [PubMed]

Amat-Roldan, I.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Amy, R. L.

R. L. Amy and R. Storb, “Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study,” Science 150(3697), 756–758 (1965).
[CrossRef] [PubMed]

Ando, J.

Arai, A.

Artigas, D.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Balaban, R. S.

M. C. Hogan, C. M. Stary, R. S. Balaban, and C. A. Combs, “NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability,” Appl. Physiol 98(4), 1420–1426 (2005).
[CrossRef]

Ben-Yakar, A.

F. Bourgeois and A. Ben-Yakar, “Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans,” Opt. Express 16(8), 5963–15963 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5963 .
[CrossRef] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Bourgeois, F.

Bovatsek, J.

Brakenhoff, G.

Brenner, S.

S. Brenner, “The genetics of Caenorhabditis elegans,” Genetics 77(1), 71–94 (1974).
[PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Cerami, L. R.

Chisholm, A.

M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
[CrossRef]

Chisholm, A. D.

Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
[CrossRef] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Chung, S. H.

S. H. Chung and E. Mazur, “Femtosecond laser ablation of neurons in C. elegans for behavioral studies,” Appl. Phys., A Mater. Sci. Process. 96(2), 335–341 (2009).
[CrossRef]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Combs, C. A.

M. C. Hogan, C. M. Stary, R. S. Balaban, and C. A. Combs, “NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability,” Appl. Physiol 98(4), 1420–1426 (2005).
[CrossRef]

Datta, D.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
[PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Eaton, S. M.

Filippidis, G.

E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
[CrossRef] [PubMed]

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

Fotakis, C.

E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
[CrossRef] [PubMed]

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

Fujita, K.

Gattass, R. R.

Ghosh-Roy, A.

Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
[CrossRef] [PubMed]

Goldberg, J. H.

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, “Multiphoton Stimulation of Neurons Multiphoton stimulation of neurons,” Neurobiol. 51(3), 237–247 (2002).
[CrossRef]

Gualda, E. J.

E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
[CrossRef] [PubMed]

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

Herman, P. R.

Hirase, H.

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, “Multiphoton Stimulation of Neurons Multiphoton stimulation of neurons,” Neurobiol. 51(3), 237–247 (2002).
[CrossRef]

Hogan, M. C.

M. C. Hogan, C. M. Stary, R. S. Balaban, and C. A. Combs, “NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability,” Appl. Physiol 98(4), 1420–1426 (2005).
[CrossRef]

Hüttmann, G.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Ingber, D. E.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
[PubMed]

Iwanaga, S.

Jin, Y.

Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
[CrossRef] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Kawata, S.

Kumamoto, Y.

LeDuc, P.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
[PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Loza-Alvarez, P.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[CrossRef] [PubMed]

Mari, M.

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
[CrossRef] [PubMed]

Mathew, M.

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[CrossRef] [PubMed]

Mazur, E.

S. H. Chung and E. Mazur, “Femtosecond laser ablation of neurons in C. elegans for behavioral studies,” Appl. Phys., A Mater. Sci. Process. 96(2), 335–341 (2009).
[CrossRef]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5279 .
[CrossRef] [PubMed]

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
[PubMed]

Muller, M.

Nikolenko, V.

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, “Multiphoton Stimulation of Neurons Multiphoton stimulation of neurons,” Neurobiol. 51(3), 237–247 (2002).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Rohde, C. B.

F. Zeng, C. B. Rohde, and M. F. Yanik, “Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation,” Lab Chip 8(5), 653–656 (2008).
[CrossRef] [PubMed]

Santos, S. I. C. O.

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Schaffer, C. B.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
[PubMed]

Shah, L.

Shen, N.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
[PubMed]

Silberberg, Y.

Smith, N. I.

Squier, J.

Stary, C. M.

M. C. Hogan, C. M. Stary, R. S. Balaban, and C. A. Combs, “NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability,” Appl. Physiol 98(4), 1420–1426 (2005).
[CrossRef]

Storb, R.

R. L. Amy and R. Storb, “Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study,” Science 150(3697), 756–758 (1965).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Tavernarakis, N.

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
[CrossRef] [PubMed]

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Vlachos, M.

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Voglis, G.

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wilson, K. R.

Wu, Z.

Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
[CrossRef] [PubMed]

Yanik, M. F.

F. Zeng, C. B. Rohde, and M. F. Yanik, “Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation,” Lab Chip 8(5), 653–656 (2008).
[CrossRef] [PubMed]

Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
[CrossRef] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Yelin, D.

Yoshino, F.

Yuste, R.

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, “Multiphoton Stimulation of Neurons Multiphoton stimulation of neurons,” Neurobiol. 51(3), 237–247 (2002).
[CrossRef]

Zalvidea, D.

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[CrossRef] [PubMed]

Zeng, F.

F. Zeng, C. B. Rohde, and M. F. Yanik, “Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation,” Lab Chip 8(5), 653–656 (2008).
[CrossRef] [PubMed]

Zhang, H. B.

Zhang, J. Z.

Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

S. H. Chung and E. Mazur, “Femtosecond laser ablation of neurons in C. elegans for behavioral studies,” Appl. Phys., A Mater. Sci. Process. 96(2), 335–341 (2009).
[CrossRef]

Appl. Physiol (1)

M. C. Hogan, C. M. Stary, R. S. Balaban, and C. A. Combs, “NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability,” Appl. Physiol 98(4), 1420–1426 (2005).
[CrossRef]

Genetics (1)

S. Brenner, “The genetics of Caenorhabditis elegans,” Genetics 77(1), 71–94 (1974).
[PubMed]

IEEE J. Quantum Electron. (1)

M. F. Yanik, H. Cinar, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy,” IEEE J. Quantum Electron. 12, 1283–1291 (2006).
[CrossRef]

J. Biomed. Opt. (1)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

J. Microsc. (2)

E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, and N. Tavernarakis, “In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy,” J. Microsc. 229(1), 141–150 (2008).
[CrossRef] [PubMed]

E. J. Gualda, G. Filippidis, M. Mari, G. Voglis, M. Vlachos, C. Fotakis, and N. Tavernarakis, “In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy,” J. Microsc. 232(2), 270–275 (2008).
[PubMed]

Lab Chip (1)

F. Zeng, C. B. Rohde, and M. F. Yanik, “Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation,” Lab Chip 8(5), 653–656 (2008).
[CrossRef] [PubMed]

Mech. Chem. Biosyst. (1)

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2(1), 17–25 (2005).
[PubMed]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Nature (1)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[CrossRef] [PubMed]

Neurobiol. (1)

H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, “Multiphoton Stimulation of Neurons Multiphoton stimulation of neurons,” Neurobiol. 51(3), 237–247 (2002).
[CrossRef]

Opt. Express (6)

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5279 .
[CrossRef] [PubMed]

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4708 .
[CrossRef] [PubMed]

J. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-3-9-315 .
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-5-8-169 .
[CrossRef] [PubMed]

F. Bourgeois and A. Ben-Yakar, “Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans,” Opt. Express 16(8), 5963–15963 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5963 .
[CrossRef] [PubMed]

N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, “A femtosecond laser pacemaker for heart muscle cells,” Opt. Express 16(12), 8604–8616 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8604 .
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Wu, A. Ghosh-Roy, M. F. Yanik, J. Z. Zhang, Y. Jin, and A. D. Chisholm, “Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 15132–15137 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[CrossRef] [PubMed]

Science (2)

R. L. Amy and R. Storb, “Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study,” Science 150(3697), 756–758 (1965).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (1)

http://www.nikoninstruments.com/Products/Microscope-Systems/Inverted- Microscopes/Biological/Eclipse-Ti .

Supplementary Material (1)

» Media 1: AVI (350 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the multimodal workstation with its various light paths. Green light path-backward detected fluorescence, violet light path-epi-fluorescence and confocal excitation, blue light path-forward propagating signal from laser scanning confocal brightfield, red light path-NIR excitation used for laser surgery. The diascopic detector forwards the signal from LSBFC into an optical fibre. Note the use of two filter turrets [see ref. (18) for details].

Fig. 5
Fig. 5

Time lapse confocal laser scanning brightfield images showing worm’s muscular contraction as a result of the impact of the laser beam used for laser nanosurgery. a- before surgical procedure; b-l- time evolution of muscular contraction. Horizontal and vertical dashed lines are marking a prominent anatomical reference to aid in the observation of this active process. Time between frames: 1 second.

Fig. 7
Fig. 7

Time lapse images showing the spreading of autofluorescence in a single body wall muscle cell. a- before surgical procedure; b- evolution of the phenomenon during nanosurgery. Images obtained with confocal fluorescence microscopy using 488nm as excitation source. Time between frames: 1 second.

Fig. 2
Fig. 2

Time-lapse images depicting GFP expressing axoplasm spilling and bursting from D-type motoneurons in C. elegans. (a) Before incision; (b-l) evolution of axoplasm spilling after nanosurgery. Time between frames: 1 second. Imaging of this dynamic process was done with confocal microscopy using 488nm for excitation.

Fig. 3
Fig. 3

Confocal laser scanning brightfield (LSBFC) images of the dynamics of cuticle opening and closure as result of induced bubble during a process of laser nanosurgery. a- before surgical intervention; b-l dynamics of cuticle opening/closure. Time between frames: 1 second.

Fig. 4
Fig. 4

Time lapse confocal images of both the green (left hand figure) and the superposed blue and green (right hand figure) channels of axonal displacement by the cuticle hole and the resultant blue autofluorescence as a result of the cavitation bubble. a-before surgical procedure; b-o evolution of the process. Time between frames: 1 second.

Fig. 6
Fig. 6

Time lapse movie of laser induced muscular contraction. The movie shows the superposition of the green channel (showing the axons of neurons) as well as the LSBFC channel (showing the midbody of the worm). Laser impact incises the axon and at the same time induces muscular contraction which is seen as the movement of the whole midbody (Media 1).

Fig. 8
Fig. 8

Difference between increased autofluorescence due to collateral damage and single muscle cell stimulation. a- before surgical procedure on axon-2; b- after surgical procedure on axon-2. Nanosurgery on axon-1 was performed before being performed on axon-2.

Tables (1)

Tables Icon

Table 1 Observed dynamic effects, their duration and the imaging techniques used to visualise each effect. 3CC – three channel confocal microscopy; LSBFC –confocal laser scanning brightfield

Metrics