Abstract

A design is proposed that allows non-stationary field distribution with Bragg gratings in multiple slot waveguides. Selective coupling between modes is achieved or suppressed, according to controllable selection rules, based on mode symmetry. By applying such rules, backward pulling radiation pressure - i.e. toward the light source - can be obtained inside the slots. A mode-switching filter is also proposed, which allows the switching between forward and backward direction of radiation pressure. This “light-actuated” syringe could have potential applications for bidirectional particle trapping and manipulation, optofluidics, optomechanics and biotechnology.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  4. A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
    [CrossRef] [PubMed]
  5. J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
    [CrossRef] [PubMed]
  6. J. Pine and G. Chow, “Moving live dissociated neurons with an optical tweezer,” IEEE Trans. Biomed. Eng. 56(4), 1184–1188 (2009).
    [CrossRef] [PubMed]
  7. M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
    [CrossRef] [PubMed]
  8. R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Integrative Biology 1, 43–52 (2009).
    [CrossRef] [PubMed]
  9. C. Brunner, A. Niendorf, and J. A. Käs, “Passive and active single-cell biomechanics: a new perspective in cancer diagnosis,” Soft Matter 5(11), 2171–2178 (2009).
    [CrossRef]
  10. Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
    [CrossRef]
  11. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [CrossRef] [PubMed]
  12. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [CrossRef] [PubMed]
  13. D. J. Andrews, Structured Light and its Applications, (Elsevier, Amsterdam, 2008).
  14. T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77(20), 3131 (2000).
    [CrossRef]
  15. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
    [CrossRef] [PubMed]
  16. G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
    [CrossRef] [PubMed]
  17. P. J. Reece, E. M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett. 98(20), 203902 (2007).
    [CrossRef] [PubMed]
  18. M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
    [CrossRef]
  19. D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
    [CrossRef]
  20. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
    [CrossRef]
  21. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
    [CrossRef] [PubMed]
  22. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [CrossRef] [PubMed]
  23. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  24. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  25. A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [CrossRef] [PubMed]
  26. E. Peral and A. Yariv, “Supermodes of grating-coupled multimode waveguides and application to mode conversion between copropagating modes mediated by backward Bragg scattering,” J. Lightwave Technol. 17(5), 942–947 (1999).
    [CrossRef]
  27. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
    [CrossRef] [PubMed]
  28. L. Vivien, D. Marris-Morini, A. Griol, K. B. Gylfason, D. Hill, J. Lvarez, H. Sohlström, J. Hurtado, D. Bouville, and E. Cassan, “Vertical multiple-slot waveguide ring resonators in silicon nitride,” Opt. Express 16(22), 17237–17242 (2008).
    [CrossRef] [PubMed]
  29. X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008).
    [CrossRef]
  30. C. Kittel, Introduction to Solid State Physics, 8th edition (Wiley, New York, 2004); N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
  31. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
    [CrossRef] [PubMed]
  32. F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
    [CrossRef]
  33. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
    [CrossRef] [PubMed]
  34. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
    [CrossRef]
  35. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
    [CrossRef]
  36. C. R. Pollock, Fundamental of optoelectronics (Irwin, 1994); B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  37. E. D. Palik, Handbook of Optical Constants of Solids, Volume 3 (Academic Press, 1997).
  38. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
    [CrossRef]

2009 (13)

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[CrossRef] [PubMed]

J. Pine and G. Chow, “Moving live dissociated neurons with an optical tweezer,” IEEE Trans. Biomed. Eng. 56(4), 1184–1188 (2009).
[CrossRef] [PubMed]

M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
[CrossRef] [PubMed]

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Integrative Biology 1, 43–52 (2009).
[CrossRef] [PubMed]

C. Brunner, A. Niendorf, and J. A. Käs, “Passive and active single-cell biomechanics: a new perspective in cancer diagnosis,” Soft Matter 5(11), 2171–2178 (2009).
[CrossRef]

Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
[CrossRef]

D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

2008 (5)

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008).
[CrossRef]

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

L. Vivien, D. Marris-Morini, A. Griol, K. B. Gylfason, D. Hill, J. Lvarez, H. Sohlström, J. Hurtado, D. Bouville, and E. Cassan, “Vertical multiple-slot waveguide ring resonators in silicon nitride,” Opt. Express 16(22), 17237–17242 (2008).
[CrossRef] [PubMed]

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[CrossRef]

2007 (4)

P. J. Reece, E. M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett. 98(20), 203902 (2007).
[CrossRef] [PubMed]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
[CrossRef] [PubMed]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
[CrossRef] [PubMed]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[CrossRef]

2006 (1)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (1)

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[CrossRef]

2000 (1)

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77(20), 3131 (2000).
[CrossRef]

1999 (1)

1997 (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

1996 (2)

1970 (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Almeida, V. R.

Antezza, M.

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Baba, Y.

M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
[CrossRef] [PubMed]

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Barrios, C. A.

Barthelemy, P.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[CrossRef]

Bouville, D.

Brambilla, G.

Brunner, C.

C. Brunner, A. Niendorf, and J. A. Käs, “Passive and active single-cell biomechanics: a new perspective in cancer diagnosis,” Soft Matter 5(11), 2171–2178 (2009).
[CrossRef]

Camacho, R.

Capasso, F.

Carusotto, I.

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

Cassan, E.

Chan, J.

Chatelain, F.

Chen, S.

X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008).
[CrossRef]

Chow, G.

J. Pine and G. Chow, “Moving live dissociated neurons with an optical tweezer,” IEEE Trans. Biomed. Eng. 56(4), 1184–1188 (2009).
[CrossRef] [PubMed]

Colas, G.

Cooper, J.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Crozier, K. B.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

Dérouard, J.

Dholakia, K.

P. J. Reece, E. M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett. 98(20), 203902 (2007).
[CrossRef] [PubMed]

Dong, P.

Eichenfield, M.

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Evander, M.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[CrossRef] [PubMed]

Faria, E. C.

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Integrative Biology 1, 43–52 (2009).
[CrossRef] [PubMed]

Fedeli, J. M.

D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[CrossRef] [PubMed]

Feng, N. N.

Ferret, P.

D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

Fuchs, A.

Gaburro, Z.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[CrossRef]

Gardner, P.

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Integrative Biology 1, 43–52 (2009).
[CrossRef] [PubMed]

Gaugiran, S.

Getin, S.

D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Gétin, S.

Ghulinyan, M.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[CrossRef]

Girard, C.

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Griol, A.

Gylfason, K. B.

Hammarström, B.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[CrossRef] [PubMed]

Harvey, T. J.

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Integrative Biology 1, 43–52 (2009).
[CrossRef] [PubMed]

Helleso, O. G.

D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Hill, D.

Hong, C. Y.

Hurtado, J.

Ibanescu, M.

Ishimori, K.

Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jonáš, A.

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Kaji, N.

M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
[CrossRef] [PubMed]

Käs, J. A.

C. Brunner, A. Niendorf, and J. A. Käs, “Passive and active single-cell biomechanics: a new perspective in cancer diagnosis,” Soft Matter 5(11), 2171–2178 (2009).
[CrossRef]

Kawata, S.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

Kimerling, L.

Kitamura, N.

Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
[CrossRef]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Laurell, T.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[CrossRef] [PubMed]

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Lipson, M.

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
[CrossRef] [PubMed]

Luff, B. J.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[CrossRef]

Lvarez, J.

Marris-Morini, D.

Masuda, S.

Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
[CrossRef]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

Michel, J.

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Murata, M.

M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
[CrossRef] [PubMed]

Murugan, G. S.

Neel, D.

D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Ng, L. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[CrossRef]

Niendorf, A.

C. Brunner, A. Niendorf, and J. A. Käs, “Passive and active single-cell biomechanics: a new perspective in cancer diagnosis,” Soft Matter 5(11), 2171–2178 (2009).
[CrossRef]

Nilsson, J.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[CrossRef] [PubMed]

Nishino, M.

Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
[CrossRef]

Okamoto, Y.

M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
[CrossRef] [PubMed]

Padgett, M.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Painter, O.

Park, Y. S.

M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
[CrossRef] [PubMed]

Pavesi, L.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[CrossRef]

Peral, E.

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Pine, J.

J. Pine and G. Chow, “Moving live dissociated neurons with an optical tweezer,” IEEE Trans. Biomed. Eng. 56(4), 1184–1188 (2009).
[CrossRef] [PubMed]

Povinelli, M. L.

Quidant, R.

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[CrossRef]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Recati, A.

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

Reece, P. J.

P. J. Reece, E. M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett. 98(20), 203902 (2007).
[CrossRef] [PubMed]

Riboli, F.

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

Richardson, D. J.

Righini, M.

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[CrossRef]

Rosina, M.

D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Schonbrun, E.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

Shoji, T.

Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
[CrossRef]

Smythe, E. J.

Snook, R. D.

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Integrative Biology 1, 43–52 (2009).
[CrossRef] [PubMed]

Sohlström, H.

Sun, R.

Tanaka, T.

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77(20), 3131 (2000).
[CrossRef]

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Tani, T.

Tassieri, M.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Tokeshi, M.

M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
[CrossRef] [PubMed]

Toninelli, C.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[CrossRef]

Tsuboi, Y.

Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
[CrossRef]

Tu, X.

X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008).
[CrossRef]

Vivien, L.

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

Wang, Q.

X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008).
[CrossRef]

Wiersma, D. S.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[CrossRef]

Wilkinson, J. S.

G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
[CrossRef] [PubMed]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[CrossRef]

Wright, E. M.

P. J. Reece, E. M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett. 98(20), 203902 (2007).
[CrossRef] [PubMed]

Xu, Q. F.

Xu, X.

X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008).
[CrossRef]

Yamamoto, S.

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77(20), 3131 (2000).
[CrossRef]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Yao, A.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Yariv, A.

Yu, J.

X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008).
[CrossRef]

Zemánek, P.

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Zervas, M. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[CrossRef]

Anal. Bioanal. Chem. (1)

M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77(20), 3131 (2000).
[CrossRef]

D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009).
[CrossRef]

Electrophoresis (1)

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Eur. Phys. J. D (1)

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

J. Pine and G. Chow, “Moving live dissociated neurons with an optical tweezer,” IEEE Trans. Biomed. Eng. 56(4), 1184–1188 (2009).
[CrossRef] [PubMed]

Integrative Biology (1)

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Integrative Biology 1, 43–52 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[CrossRef]

Lab Chip (1)

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Nano Lett. (1)

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[CrossRef]

Nature (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (3)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

P. J. Reece, E. M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett. 98(20), 203902 (2007).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

Soft Matter (1)

C. Brunner, A. Niendorf, and J. A. Käs, “Passive and active single-cell biomechanics: a new perspective in cancer diagnosis,” Soft Matter 5(11), 2171–2178 (2009).
[CrossRef]

Other (4)

D. J. Andrews, Structured Light and its Applications, (Elsevier, Amsterdam, 2008).

C. Kittel, Introduction to Solid State Physics, 8th edition (Wiley, New York, 2004); N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

C. R. Pollock, Fundamental of optoelectronics (Irwin, 1994); B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

E. D. Palik, Handbook of Optical Constants of Solids, Volume 3 (Academic Press, 1997).

Supplementary Material (1)

» Media 1: MPG (2474 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Signatures of the 3 guided TM supermodes at vacuum wavelength λ0=1.55 μm in a 2-slot waveguide resulting from 3 coupled 150 nm thick Si slabs. Air slots are 350 nm thick. For each supermode, the effective index neff is also shown. The thickness of Si slabs is chosen to guarantee single mode operation (for the isolated slab).

Fig. 2
Fig. 2

Photonic structure to reflect supermode +++ to supermode +-+ (see Fig. 1). The dashed line indicate one of the reflecting interfaces. The phase shift associated to elementary reflections is shown by bending arrows. The period Λ of the structure (690 nm) and the other values are resulting from the procedure described in the text. Layer h (higher effective index) and layer l (lower effective index) refer to the 2 types of quasi-1D layers which define the Bragg mirror. The graph is to scale.

Fig. 3
Fig. 3

2D FDTD simulation of transmission and reflection spectra of the structure in Fig. 2 with 100 periods and with supermode +++ excitation (see Fig. 1). The stop band is relatively narrow due to the low contrast of effective refractive index. Insets show the profile of electric field Ey . In (a), the reflected beam has the profile of supermode +-+ , whereas in (c) the profile of reflected beams matches the profile of incident beam (not shown), as expected, because the Bragg condition is satisfied for the reflection from supermode +++ to itself. However, in (c), reflection is almost completely suppressed by the symmetry mismatch of the mirror (residual reflection is ≈1.2%). Inset (b) shows that the transmitted beam maintains the profile of supermode +++ . Decrease of R+T at lower wavelength is due to coupling by the grating of supermode +-+ to free space propagation.

Fig. 4
Fig. 4

2D FDTD simulation of Poynting vector of the structure in Fig. 2, with 100 periods, and with supermode -+- excitation (see Fig. 1). Light injection is from the left side. Excitation is narrowband (vacuum wavelength λ0 ≈1.54 μm). Map is to scale. Only a few periods are shown, in proximity of the input side. Red (black) arrows show the result without (with) corrugation. The blue lines are the outline of the structure with corrugation. While the energy in the outer side of the waveguide is always traveling forward (top and bottom of figure), in the slots (i.e. in the 2 regions between the slabs), the component along the waveguide axis is dominantly forward (backward) in absence (presence) of the corrugation.

Fig. 5
Fig. 5

Snapshot of the electric field Ey distribution, according to 2D FDTD simulation of the structure in Fig. 2, with 100 periods, and with supermode -+- excitation (see Fig. 1). Light is injected from the left side. Excitation is narrowband (vacuum wavelength λ0 ≈1.54 μm). Only a few periods are shown, in proximity of the input side. Map is to scale. Large arrows indicate the direction of energy flux (Media 1).

Fig. 6
Fig. 6

Sample 2D photonic structure to selectively filter supermode +++ or supermode +-+ (supermode profiles are shown in Fig. 1). Grey (white) areas represent Si (air). The vertical line at x = 0 μm indicates the location of the energy source in FDTD simulations. The arrow indicates the direction of injection. The vertical line at x = 69 μm indicates the location of monitor. The graph is to scale.

Fig. 7
Fig. 7

2D FDTD simulation of transmission spectra of the structure in Fig. 6. Each spectrum has been calculated by exciting only one supermode. Black (red) curve is the relative power transmission of supermode +++ (supermode +-+ ). The refractive index of Si was modeled as a complex quantity according to Palik [37] (the real part at 1.545 μm was about 3.48). Panel a shows the simulation with the background refractive index set to n0 = 1. Panel b shows the simulation with an increase of the background index by 2%. The vertical dashed line is the design wavelength for this filter (1.545 μm). Colored dots indicate the transmission of the supermodes at this wavelength. In panel a (b), the power transmission is 0.1% (0.8%) for supermode +++ (supermode +-+), and about 57% (49%) for supermode +-+ (supermode +++ ). The bands generated by the photonic structure with period 580 nm (667 nm) are marked by blue (green) arrows. Band 1 reflects supermode +++ to +++ , band 2 supermode +-+ to +-+ , band 3 supermode +-+ to +-+ , band 4 is the same as band 3, but occurs under excitation with supermode +++ due to stray coupling with supermode +-+ . Band 5 (band 6) appears in both the red and black curve because it is couples supermode +++ to supermode +-+ and it is provided by the inner (outer) photonic structure.

Fig. 8
Fig. 8

2D FDTD simulation of simultaneous excitation of supermodes +++ and +- in the device in Fig. 6. Left panel: field profile of source (the central waveguide in Fig. 6 has been prolonged to the left, as shown in the inset, to allow this mode profile). Simultaneous excitation is due to mismatch between the source and the supermodes profiles. Central panel: field profile of the output, with no index shift (black curve) and with 2% shift (blue curve). Right panel: analytical profile of the +++ (blue curve) and +-+ (black curve) supermodes. Comparison between the central and the right panel shows that the output of the device has a field profile almost overlapping a single supermode (either +++ or +-+ ), depending on the index of the background. Hence, the structure in Fig. 6 works as a supermode selector. Residual components of the other modes are observable as deviations from the theoretical profile (particularly visible for |y-y0 |>1 μm).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Λ = 2 π | Δ β | .
ψ k ( r ) = R e i k r ϕ ( r R ) ,
ϕ ( r ) = n b n ψ n ( r ) ,
ψ n * ( r ) ψ m ( r R ) d r « 1 ( for R 0 ) , and ψ n * ( r ) Δ U ( r ) ψ m ( r R ) d r « 1 ,
2 E + k 0 2 n c ( r ) 2 E = β 2 E ,
f h ( y ) C m = 0 m = n cos ( K h y ) f e ( y m d ) ,
f h ( y ) C m = 0 m = n cos ( h π m / n ) f e ( y m d ) .
a ( m ) b ( m ) f h ( y ) d y ,
r = n 0 n 1 n 0 + n 1 ,
d l = λ 0 4 n l and d h = λ 0 4 n h ,
d l = λ 0 2 ( n l , f + n l , b ) and d h = λ 0 2 ( n h , f + n h , b ) .

Metrics