Abstract

A technique combining low-coherence reflectometry, laser ablation and microfluidics in a single microstructured fiber is developed. Experimental results demonstrate the possibility to ablate thin aluminum foil samples with fiber-guided Nd:YAG laser light, to collect liquid in the holes of the fiber and to simultaneously monitor the positioning of fiber for ablation and the fluid collection process with low-coherence reflectometry. Potential applications of the technique include minimally invasive retrieval of liquid samples with low contamination risk.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
    [CrossRef] [PubMed]
  2. A. K. Murray and M. R. Dickinson, “Tissue ablation-rate measurements with a long-pulsed, fibre-deliverable 308 nm excimer laser,” Lasers Med. Sci. 19(3), 127–138 (2004).
    [CrossRef] [PubMed]
  3. H. Pratisto, M. Frenz, M. Ith, H. J. Altermatt, E. D. Jansen, and H. P. Weber, “Combination of fiber guided pulses erbium and holmium laser radiation for tissue ablation under water,” Appl. Opt. 35(19), 3328–3337 (1996).
    [CrossRef] [PubMed]
  4. D. Psaltis, S. R. Quake, and C. I. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  5. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  6. S. A. Kingsley and D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21(10), 434–435 (1985).
    [CrossRef]
  7. H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submilimeter optical reflectometry,” J. Lightwave Technol. 7(8), 1225–1233 (1989).
    [CrossRef]
  8. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [CrossRef]
  9. S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
    [CrossRef] [PubMed]
  10. S. Zoppel, R. Merz, J. Zehetner, and G. A. Reider, “Enhancement of laser ablation yield by two color excitation,” Appl. Phys., A Mater. Sci. Process. 81(4), 847–850 (2005).
    [CrossRef]
  11. S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
    [CrossRef]

2007

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

2006

D. Psaltis, S. R. Quake, and C. I. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2005

S. Zoppel, R. Merz, J. Zehetner, and G. A. Reider, “Enhancement of laser ablation yield by two color excitation,” Appl. Phys., A Mater. Sci. Process. 81(4), 847–850 (2005).
[CrossRef]

2004

A. K. Murray and M. R. Dickinson, “Tissue ablation-rate measurements with a long-pulsed, fibre-deliverable 308 nm excimer laser,” Lasers Med. Sci. 19(3), 127–138 (2004).
[CrossRef] [PubMed]

2001

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

1999

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[CrossRef] [PubMed]

S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
[CrossRef]

1996

1989

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submilimeter optical reflectometry,” J. Lightwave Technol. 7(8), 1225–1233 (1989).
[CrossRef]

1985

S. A. Kingsley and D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21(10), 434–435 (1985).
[CrossRef]

Altermatt, H. J.

Beaud, P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submilimeter optical reflectometry,” J. Lightwave Technol. 7(8), 1225–1233 (1989).
[CrossRef]

Boppart, S. A.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[CrossRef] [PubMed]

Brezinski, M. E.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[CrossRef] [PubMed]

Celliers, P. M.

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

Da Silva, L. B.

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

Dausinger, F.

S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
[CrossRef]

Davies, D. E. N.

S. A. Kingsley and D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21(10), 434–435 (1985).
[CrossRef]

Dickinson, M. R.

A. K. Murray and M. R. Dickinson, “Tissue ablation-rate measurements with a long-pulsed, fibre-deliverable 308 nm excimer laser,” Lasers Med. Sci. 19(3), 127–138 (2004).
[CrossRef] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Eichler, J.

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

Feit, M. D.

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

Frenz, M.

Fujimoto, J. G.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[CrossRef] [PubMed]

Garnov, S. V.

S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
[CrossRef]

Gilgen, H. H.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submilimeter optical reflectometry,” J. Lightwave Technol. 7(8), 1225–1233 (1989).
[CrossRef]

Herrmann, J.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[CrossRef] [PubMed]

Hodel, W.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submilimeter optical reflectometry,” J. Lightwave Technol. 7(8), 1225–1233 (1989).
[CrossRef]

Ith, M.

Jansen, E. D.

Joslin, E. J.

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

Kim, B. M.

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

Kingsley, S. A.

S. A. Kingsley and D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21(10), 434–435 (1985).
[CrossRef]

Klimentov, S. M.

S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
[CrossRef]

Kononenko, T. V.

S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
[CrossRef]

Konov, V. I.

S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
[CrossRef]

Merz, R.

S. Zoppel, R. Merz, J. Zehetner, and G. A. Reider, “Enhancement of laser ablation yield by two color excitation,” Appl. Phys., A Mater. Sci. Process. 81(4), 847–850 (2005).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Murray, A. K.

A. K. Murray and M. R. Dickinson, “Tissue ablation-rate measurements with a long-pulsed, fibre-deliverable 308 nm excimer laser,” Lasers Med. Sci. 19(3), 127–138 (2004).
[CrossRef] [PubMed]

Novak, R. P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submilimeter optical reflectometry,” J. Lightwave Technol. 7(8), 1225–1233 (1989).
[CrossRef]

Pitris, C.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[CrossRef] [PubMed]

Pivovarov, P. A.

S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
[CrossRef]

Pratisto, H.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. I. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. I. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Reider, G. A.

S. Zoppel, R. Merz, J. Zehetner, and G. A. Reider, “Enhancement of laser ablation yield by two color excitation,” Appl. Phys., A Mater. Sci. Process. 81(4), 847–850 (2005).
[CrossRef]

Rubenchik, A. M.

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

Salathe, R. P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submilimeter optical reflectometry,” J. Lightwave Technol. 7(8), 1225–1233 (1989).
[CrossRef]

Stamper, D. L.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[CrossRef] [PubMed]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

Weber, H. P.

Yang, C. I.

D. Psaltis, S. R. Quake, and C. I. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Zehetner, J.

S. Zoppel, R. Merz, J. Zehetner, and G. A. Reider, “Enhancement of laser ablation yield by two color excitation,” Appl. Phys., A Mater. Sci. Process. 81(4), 847–850 (2005).
[CrossRef]

Zoppel, S.

S. Zoppel, R. Merz, J. Zehetner, and G. A. Reider, “Enhancement of laser ablation yield by two color excitation,” Appl. Phys., A Mater. Sci. Process. 81(4), 847–850 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Zoppel, R. Merz, J. Zehetner, and G. A. Reider, “Enhancement of laser ablation yield by two color excitation,” Appl. Phys., A Mater. Sci. Process. 81(4), 847–850 (2005).
[CrossRef]

S. M. Klimentov, S. V. Garnov, T. V. Kononenko, V. I. Konov, P. A. Pivovarov, and F. Dausinger, “High rate deep channel ablative formation by picosecond–nanosecond combined laser pulses,” Appl. Phys., A 69(7Suppl.), S633–S636 (1999).
[CrossRef]

Electron. Lett.

S. A. Kingsley and D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21(10), 434–435 (1985).
[CrossRef]

J. Biomed. Opt.

B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. Da Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef] [PubMed]

J. Lightwave Technol.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submilimeter optical reflectometry,” J. Lightwave Technol. 7(8), 1225–1233 (1989).
[CrossRef]

J. Surg. Res.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[CrossRef] [PubMed]

Lasers Med. Sci.

A. K. Murray and M. R. Dickinson, “Tissue ablation-rate measurements with a long-pulsed, fibre-deliverable 308 nm excimer laser,” Lasers Med. Sci. 19(3), 127–138 (2004).
[CrossRef] [PubMed]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. I. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for reflectometry studies of a glass sample with air inclusions.

Fig. 2
Fig. 2

Relative reflected signal generated by a 25/125 µm fiber capillary probed from the side by low-coherence reflectometry. (Left) The plot on a dB scale is normalized to the largest reflection peak from the capillary. (Right) The black trace shows on a percent scale a detail of the same plot of the reflections on the inner-hole walls, and the dashed red trace when the fiber capillary is filled with distilled water.

Fig. 3
Fig. 3

Reflections obtained from glass sample front and back surfaces. The distance between the two marked reflections gives the extent of the air inclusion.

Fig. 4
Fig. 4

(a) Scanning electron microscope (SEM) image of the 125 µm microstructured 4-hole fiber employed. (b) Illustration of cross-section of a microstructured 4-hole fiber spliced to an etched (~78 µm) SMF28 fiber. (c) Red dye solution collected into bottom end of the microstructured 4-hole fiber.

Fig. 5
Fig. 5

SEM image of aluminum foil ablated with Nd:YAG laser radiation through the microstructured fiber. The diameter of the ablated hole is ~40 µm.

Fig. 6
Fig. 6

A schematically illustration of the setup for combining reflectometry, ablation and fluid collection in a special fiber arrangement, consisting of a microstructured 4-hole fiber fusion spliced to an etched (~78 µm) single-mode fiber. The dichroic mirror used in the setup transmits 1.3 µm light and reflects 1.06 µm light. (a) Positioning of fiber for ablation. (b) Fluid collection in a microstructured 4-hole fiber after ablation. (c) Microstructured 4-hole fiber spliced to an etched SMF28 fiber.

Fig. 7
Fig. 7

Monitoring ablation and fluid retrieval by reflectometry. (a) The fiber is positioned 100 µm away from the surface to be ablated. (b) High power laser light ablates the membrane, creating a perforation. A liquid surface is detected underneath the Al-foil. (c) The liquid infiltrates the ablated area by capillarity and approaches the fiber tip. (d) The reflection of the tip is strongly attenuated when the liquid comes in contact with the fiber. The liquid is now drawn into the fiber holes by capillarity. (e) The liquid is collected into the holes for further analysis. (f) When the contact between the liquid and the fiber tip is broken (e.g., by exhausting the liquid available) the reflection of the tip increases and a new reflection appears associated with the liquid surface.

Metrics