Abstract

A new waveguide design for an optofluidic chip is presented. It mitigates multi-mode behavior in solid and liquid-core waveguides by increasing fundamental mode coupling to 82% and 95%, respectively. Additionally, we demonstrate a six-fold improvement in lateral confinement of optically guided dielectric microparticles and double the detection efficiency of fluorescent particles.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  3. R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguide based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
    [CrossRef]
  4. H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1-2), 3–16 (2008).
    [CrossRef] [PubMed]
  5. A. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1-2), 17–32 (2008).
    [CrossRef]
  6. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
    [CrossRef]
  7. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
    [CrossRef] [PubMed]
  8. P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett. 33(7), 672–674 (2008).
    [CrossRef] [PubMed]
  9. M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
    [CrossRef] [PubMed]
  10. S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
    [CrossRef] [PubMed]
  11. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Springer, 1983).
  12. R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
    [CrossRef]
  13. E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
    [CrossRef] [PubMed]
  14. J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
    [CrossRef]
  15. D. Marcuse, “Radiation losses of step-tapered channel waveguides,” Appl. Opt. 19(21), 3676–3681 (1980).
    [CrossRef] [PubMed]
  16. R. N. Thurston, E. Kapon, and A. Shahar, “Two-dimensional control of mode size in optical channel waveguides by lateral channel tapering,” Opt. Lett. 16(5), 306–308 (1991).
    [CrossRef] [PubMed]
  17. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]

2009

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

2008

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

A. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1-2), 17–32 (2008).
[CrossRef]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett. 33(7), 672–674 (2008).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

2007

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

2006

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2005

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[CrossRef]

2004

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguide based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[CrossRef]

1993

J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[CrossRef]

1991

1980

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Archambault, J.-L.

J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Barber, J. P.

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[CrossRef]

Bernini, R.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguide based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[CrossRef]

Black, R.

J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[CrossRef]

Bures, J.

J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[CrossRef]

Campopiano, S.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguide based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[CrossRef]

Deamer, D. W.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Eggleton, B.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Hawkins, A.

A. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1-2), 17–32 (2008).
[CrossRef]

H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

Hawkins, A. R.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett. 33(7), 672–674 (2008).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[CrossRef]

Kapon, E.

Kühn, S.

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett. 33(7), 672–674 (2008).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

Lacroix, S.

J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[CrossRef]

Lunt, E. J.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett. 33(7), 672–674 (2008).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

Marcuse, D.

Measor, P.

Monat, C.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Phillips, B. S.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Rudenko, M. I.

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

Sarro, P. M.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguide based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[CrossRef]

Schmidt, H.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

A. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1-2), 17–32 (2008).
[CrossRef]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett. 33(7), 672–674 (2008).
[CrossRef] [PubMed]

H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[CrossRef]

Shahar, A.

Testa, G.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

Thurston, R. N.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yin, D.

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[CrossRef]

Zeni, L.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguide based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[CrossRef]

Biosens. Bioelectron.

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol.

J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[CrossRef]

Lab Chip

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

Microfluidics and Nanofluidics

H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

A. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1-2), 17–32 (2008).
[CrossRef]

Nat. Photonics

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Sens. Actuators B Chem.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguide based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[CrossRef]

Other

A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Supplementary Material (2)

» Media 1: AVI (1304 KB)     
» Media 2: AVI (819 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Top down schematic of an ARROW optofluidic platform with ridge-type solid-core ARROWs (SC), intersecting SC (iSC), liquid-core ARROWs (LC), and attached reservoirs (R). (b) Single-mode fiber (SMF), SC, to LC coupling scheme defining the SMF core width, wSMF, SC width, wSC, LC width, wLC, and device facet input coupling coefficient, κi.

Fig. 2
Fig. 2

First generation device liquid-core waveguide intensity pattern for (a) experimental measurement and (b) corresponding simulation.

Fig. 3
Fig. 3

Solid-core ARROW (a) fundamental mode coupling, κ1, as a function of waveguide width, wSC and (b) transmittance, T, as a function of waveguide length, LSC.

Fig. 4
Fig. 4

Representation of the single-mode fiber (SMF) and solid-core ARROW (SC) interface coupling coefficient κf for SC width wSC, SC taper over length Lt, and liquid-core ARROW (LC) coupling, κj for LC width wLC.

Fig. 5
Fig. 5

Tapered solid-core ARROW (a) fundamental mode coupling coefficient, κ1, and taper length, Lt, dependence; (b) κ1 wavelength, λ, dependence for Lt = 550μm; and (c) fabricated device for wSC = 4μm, wLC = 12μm, and Lt = 550μm.

Fig. 6
Fig. 6

Second generation device liquid-core ARROW intensity pattern for (a) experimental measurement and (b) corresponding simulation.

Fig. 7
Fig. 7

(a) Particle trajectory in a liquid-core ARROW (left) and lateral position distribution, p(x), (right) with NIR beam guiding of a microparticle. The collected particle fluorescence with a guiding beam (b) off and (c) on.

Fig. 8
Fig. 8

Representative still frames of movies showing the fluorescence of particles as they flow past the intersection of the solid to liquid core ARROWs with a NIR guiding beam (a) off (Media 1) and (b) on (Media 2) (blue: low intensity and red: high intensity, scale bar ~12μm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L d = ( Δ α ) 1 ln ( κ 1 ) ,

Metrics