Abstract

Depth resolved measurements of absorption profiles in the wavelength range of 800 nm with a bandwidth of 120 nm are demonstrated using high speed spectroscopic frequency domain OCT (SOCT) and a full range reconstruction algorithm (dispersion encoded full range, DEFR). The feasibility of the algorithm for SOCT is tested in simulation and experiment. With proper calibration, SOCT with DEFR is able to extract absolute, depth resolved absorption profiles over the whole wavelength range at once without the need of tuning and performing measurements at single wavelengths sequentially. The superior acquisition speed and better phase stability in frequency domain as compared to time domain results in a better reproducibility and practicability for spectroscopic measurements. In addition, high acquisition speed in excess of 20 kHz allows to measure absorption dynamics with 50 µs time resolution, which might be useful for the investigation of pharmacokinetics or pharmacodynamics. SOCT of ~600 µm thick single- and multilayered, non–scattering phantoms with varying absorption in the range of 5–80 cm-1, equivalent to blood absorption in capillaries, is presented. SOCT measurements are compared with those using a spectrometer in transmission mode. For Indocyanine Green (ICG), dynamic absorption measurements are demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J. S. Schumann, C. A. Puliafito, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Incorporated, 2004).
  3. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
    [CrossRef] [PubMed]
  4. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
    [CrossRef] [PubMed]
  5. W. Drexler and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography." Prog. Retin. Eye Res. 27, 45-88 (2008).
    [CrossRef]
  6. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  7. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).
  8. D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, "Three-dimensional endomicroscopy of the human colon using optical coherence tomography," Opt. Express 17, 784-796 (2009).
    [CrossRef] [PubMed]
  9. D. Faber, E. Mik, M. Alders, and T. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1437-1439 (2003).
    [CrossRef]
  10. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004).
    [CrossRef]
  11. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Differential absorption imaging with optical coherence tomography," J. Opt. Soc. Am. A 15, 2288-2296 (1998).
    [CrossRef]
  12. U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
    [CrossRef]
  13. R. Leitgeb, M. Wojtkowski, A. Kowalczky, C.K. Hitzenberger, M. Sticker, and A. Fercher, "Spectral measurement of absorption by frequency domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  14. C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4803 (2004).
    [CrossRef] [PubMed]
  15. C. Xu, P. Carney, and S. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
    [CrossRef] [PubMed]
  16. C. Xu, F. Kamalabadi, and S. A. Boppart, "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography," Appl. Opt. 44, 1813-1822 (2005).
    [CrossRef] [PubMed]
  17. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004).
    [CrossRef] [PubMed]
  18. J. Yi, J. Gong, and X. Li, "Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography," Opt. Express 17, 13157-13167 (2009).
    [CrossRef] [PubMed]
  19. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Lett. 11, 889-894 (2003).
  20. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
    [CrossRef] [PubMed]
  21. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  22. B. Saleh and M. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).
  23. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]

2009 (3)

2008 (2)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

W. Drexler and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography." Prog. Retin. Eye Res. 27, 45-88 (2008).
[CrossRef]

2005 (4)

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

C. Xu, P. Carney, and S. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
[CrossRef] [PubMed]

C. Xu, F. Kamalabadi, and S. A. Boppart, "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography," Appl. Opt. 44, 1813-1822 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (3)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Lett. 11, 889-894 (2003).

D. Faber, E. Mik, M. Alders, and T. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1437-1439 (2003).
[CrossRef]

2000 (2)

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczky, C.K. Hitzenberger, M. Sticker, and A. Fercher, "Spectral measurement of absorption by frequency domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

1998 (1)

1997 (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Aalders, M. C. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004).
[CrossRef]

Adler, D. C.

Ahlers, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

Alders, M.

D. Faber, E. Mik, M. Alders, and T. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1437-1439 (2003).
[CrossRef]

Bartlett, L. A.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

Bizheva, K.

Boppart, S.

Boppart, S. A.

Bouma, B. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Carney, P.

Cense, B.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

de Boer, J. F.

Desjardins, A. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

Do, M. N.

Drexler, W.

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography." Prog. Retin. Eye Res. 27, 45-88 (2008).
[CrossRef]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Faber, D.

D. Faber, E. Mik, M. Alders, and T. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1437-1439 (2003).
[CrossRef]

Faber, D. J.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004).
[CrossRef]

Fercher, A.

Fercher, A. F.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Lett. 11, 889-894 (2003).

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Freilich, M. I.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

Fujimoto, J.

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, "Three-dimensional endomicroscopy of the human colon using optical coherence tomography," Opt. Express 17, 784-796 (2009).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography." Prog. Retin. Eye Res. 27, 45-88 (2008).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Gong, J.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Lett. 11, 889-894 (2003).

Hitzenberger, C.K.

Hofer, B.

Hooper, B. A.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004).
[CrossRef]

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, Q.

Ippen, E.

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

K¨artner, F.

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

Kamalabadi, F.

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Ko, T. H.

Kowalczky, A.

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Leitgeb, R.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Lett. 11, 889-894 (2003).

R. Leitgeb, M. Wojtkowski, A. Kowalczky, C.K. Hitzenberger, M. Sticker, and A. Fercher, "Spectral measurement of absorption by frequency domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

Leitgeb, R. A.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

Li, X.

J. Yi, J. Gong, and X. Li, "Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography," Opt. Express 17, 13157-13167 (2009).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Marks, D. L.

Mashimo, H.

Matz, G.

Michels, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

Mik, E.

D. Faber, E. Mik, M. Alders, and T. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1437-1439 (2003).
[CrossRef]

Mik, E. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004).
[CrossRef]

Morgner, U.

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

Oh, W.-Y.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

Park, B. H.

Pierce, M. C.

Pitris, C.

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Povazay, B.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rosenberg, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

Sacu, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

Sattmann, H.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004).
[CrossRef] [PubMed]

Schmetterer, L.

Schmidt-Erfurth, U.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

Schmitt, J.

Schmitt, J. M.

Scholda, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Shishkov, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Srinivasan, V. J.

Sticker, M.

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Suter, M. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Tsai, T.-H.

Unterhuber, A.

Vakoc, B. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

van Gemert, M. J. C.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004).
[CrossRef]

van Leeuwen, T.

D. Faber, E. Mik, M. Alders, and T. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1437-1439 (2003).
[CrossRef]

van Leeuwen, T. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004).
[CrossRef]

Waxman, S.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

Wojtkowski, M.

Xiang, S. H.

Xu, C.

Yi, J.

Yung, K. M.

Zhou, C.

Appl. Opt. (1)

Invest. Ophthalmol. Vis. Sci. (1)

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005).
[CrossRef] [PubMed]

J. Am. Coll. Cardiol. Img. (1)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).

J. Opt. Soc. Am. A (1)

Ophthalmology (1)

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4803 (2004).
[CrossRef] [PubMed]

C. Xu, P. Carney, and S. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
[CrossRef] [PubMed]

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004).
[CrossRef] [PubMed]

J. Yi, J. Gong, and X. Li, "Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography," Opt. Express 17, 13157-13167 (2009).
[CrossRef] [PubMed]

D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, "Three-dimensional endomicroscopy of the human colon using optical coherence tomography," Opt. Express 17, 784-796 (2009).
[CrossRef] [PubMed]

Opt. Lett. (5)

D. Faber, E. Mik, M. Alders, and T. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1437-1439 (2003).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Lett. 11, 889-894 (2003).

U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczky, C.K. Hitzenberger, M. Sticker, and A. Fercher, "Spectral measurement of absorption by frequency domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett (1)

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004).
[CrossRef]

Prog. Retin. Eye Res. (1)

W. Drexler and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography." Prog. Retin. Eye Res. 27, 45-88 (2008).
[CrossRef]

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

J. S. Schumann, C. A. Puliafito, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Incorporated, 2004).

B. Saleh and M. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Free space interferometer for frequency domain low coherence interferometry. The spectrum of the light source is shown on the left. Sample geometry for single (a) and double layered (b) phantoms is indicated on the right.

Fig. 2.
Fig. 2.

Depth-dependent signal-to-noise for the full range, enabled by the use of dispersion encoded full range algorithm.

Fig. 3.
Fig. 3.

Measured intensity distribution showing the chromatic transfer function h(z). It describes the dependence of the backreflected signal on focus displacement z and wavelength λ and also includes the depth-dependent signal loss.

Fig. 4.
Fig. 4.

Sample; r: reflectivity; z: depth; n: refractive index; µ: absorption. Light is incident from the left, passing the surface r 0 at depth z 0, traveling through absorptive media (refractive index n 1, absorption µ 1), being reflected from reflectivity r 1 at depth z 1.

Fig. 5.
Fig. 5.

Block diagram of the processing algorithm. Spectra measured in the experiment are resampled from wavelength to frequency space and background subtracted, followed by the dispersion encoded full range algorithm (DEFR). The spectra are then filtered in the spatial domain (or time domain) by a Hanning window, isolating reflections from individual surfaces, and transformed back into frequency domain. The processed spectra are then low pass filtered in order to retrieve the envelope. Water normalization is applied, before in the final step the absorption coefficient is extracted.

Fig. 6.
Fig. 6.

Simulation of time-domain (TD) signals. left, top: original positions (dashed line) and signal with added noise, absorption, and dispersion (solid line). The peak centre is shifted compared to the original signal. left, bottom: signal generated via inverse Fourier transform from the real part of the spectrum (dashed line); signal output from the DEFR algorithm (solid blue line). right, top: TD signal for the spectrum with SNRFD=0, showing peaks still visible above the noise. right, bottom: showing the nearly linear correspondence between SNR in the frequency domain and time domain.

Fig. 7.
Fig. 7.

Absorption for different global second order dispersion; 1×10-6 (top); 3×10-6 (center); 4×10-5 (bottom); input (blue dotted line), absorption baseline (black solid line); absorption calculated from DEFR output (red solid line).

Fig. 8.
Fig. 8.

left: Dependence ofMAE and RMS errors on 2nd order dispersion. Baseline (black); DEFR (red). right: Dependence ofMAE and RMS errors on the signal-to-noise-ratio (SNR) for baseline (black) and DEFR (red). Dashed lines showing modeled behavior. Second order dispersion was fixed at 4×10-5.

Fig. 9.
Fig. 9.

Optical bandpass filters measured with spectroscopic OCT (solid lines) and compared to a reference measurement taken from a spectrometer (Ocean Optics, dashed lines).

Fig. 10.
Fig. 10.

Single layer. A 600 µm thick absorbing drop of IR 820 dye solved in water with concentration C1 was placed between glass slides. The absorption of the sample (C1, red line) was measured relative to water (blue line), which should appear at zero absorption due to normalization. Dotted lines showing standard deviation from measurements at 6 positions. The solid black line shows as reference the absorption measured independently with an spectrometer (Ocean Optics).

Fig. 11.
Fig. 11.

Double layer. Two drops of IR 820 dye solved in water with different concentrations C1 and C2 are placed between microscope cover glass slides. Thickness of the drops is 200 µm. Solid magenta line: C1; solid red line C2; dotted lines: standard deviation; solid black lines: reference measurements.

Fig. 12.
Fig. 12.

Time evolution of the total reflected power from a surface behind an ICG sample. The figure shows the bleaching dynamic within the first 15 s for two different power levels.

Fig. 13.
Fig. 13.

Time evolution of spectral absorption, calculated from the back reflection from behind an ICG sample. The absorption profile is altered in total power and shape over time due to photobleaching. Thicker lines indicate measured time points.

Tables (1)

Tables Icon

Table 1. Showing themean absolute error (MAE) and the root-mean-square error (RMS) for absorption profiles extracted for baseline and DEFR data with different global dispersion as shown in Fig. (7).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E S ( ω ) = E 0 ( ω ) h ( z , ω ) ( 1 r 0 ( ω ) 2 ) r 1 ( ω ) e μ ( ω ) d e .
S ( ω ) = E R + E S 2 = E R 2 + E S 2 DC term + 2 E R E S S ˜ cos ( 2 ωd / c 0 ) spectralmodulaions .
S ˜ 1 S ˜ 0 = E R E S , 1 E R E S , 0 = h 1 h 0 r 1 ( 1 r 0 2 ) r 0 e μd ,
S ˜ 1 S ˜ 0 S ˜ 0 , H 2 O S 1 , H 2 O = e ( μ μ H 2 O ) d ,
MAE = 1 N Σ i = 1 N μ μ 0 and RMS = 1 N Σ i = 1 N ( μ μ 0 ) 2 ,
MAE DEFR 50×10 0 .047 SNR , MAE baseline 40×10 0.05 SNR

Metrics